Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Feb;40(2):443-7.
doi: 10.1128/AAC.40.2.443.

Characterization of squalene epoxidase activity from the dermatophyte Trichophyton rubrum and its inhibition by terbinafine and other antimycotic agents

Affiliations
Comparative Study

Characterization of squalene epoxidase activity from the dermatophyte Trichophyton rubrum and its inhibition by terbinafine and other antimycotic agents

B Favre et al. Antimicrob Agents Chemother. 1996 Feb.

Abstract

Squalene epoxidase (SE) is the primary target of the allylamine antimycotic agents terbinafine and naftifine and also of the thiocarbamates. Although all of these drugs are employed primarily in dermatological therapy, SE from dermatophyte fungi has not been previously investigated. We report here the biochemical characterization of SE activity from Trichophyton rubrum and the effects of terbinafine and other inhibitors. Microsomal SE activity from T. rubrum was not dependent on soluble cytoplasmic factors but had an absolute requirement for NADPH or NADH and was stimulated by flavin adenine dinucleotide. Kinetic analyses revealed that under optimal conditions the Km for squalene was 13 microM and its Vmax was 0.71 nmol/h/mg of protein. Terbinafine was the most potent inhibitor tested, with a 50% inhibitory concentration (IC50) of 15.8 nM. This inhibition was noncompetitive with regard to the substrate squalene. A structure-activity relationship study with some analogs of terbinafine indicated that the tertiary amino structure of terbinafine was crucial for its high potency, as well as the tert-alkyl side chain. Naftifine had a lower potency (IC50, 114.6 nM) than terbinafine. Inhibition was also demonstrated by the thiocarbamates tolciclate (IC50, 28.0 nM) and tolnaftate (IC50, 51.5 nM). Interestingly, the morpholine amorolfine also displayed a weak but significant effect (IC50, 30 microM). T. rubrum SE was only slightly more sensitive (approximately twofold) to terbinafine inhibition than was the Candida albicans enzyme. Therefore, this difference cannot fully explain the much higher susceptibility (> or = 100-fold) of dermatophytes than of yeasts to this drug. The sensitivity to terbinafine of ergosterol biosynthesis in whole cells of T. rubrum (IC50, 1.5 nM) is 10-fold higher than that of SE activity, suggesting that the drug accumulates in the fungus.

PubMed Disclaimer

References

    1. Nat Prod Rep. 1994 Jun;11(3):279-302 - PubMed
    1. Mykosen. 1984 Mar;27(3):142-52 - PubMed
    1. Eur J Biochem. 1975 Aug 15;56(2):393-402 - PubMed
    1. Arzneimittelforschung. 1976;26(5):769-72 - PubMed
    1. Biochim Biophys Acta. 1977 Mar 25;486(3):401-7 - PubMed

Publication types

MeSH terms

LinkOut - more resources