Coding of peripersonal space in inferior premotor cortex (area F4)
- PMID: 8836215
- DOI: 10.1152/jn.1996.76.1.141
Coding of peripersonal space in inferior premotor cortex (area F4)
Abstract
1. We studied the functional properties of neurons in the caudal part of inferior area 6 (area F4) in awake monkeys. In agreement with previous reports, we found that the large majority (87%) of neurons responded to sensory stimuli. The responsive neurons fell into three categories: somatosensory neurons (30%); visual neurons (14%); and bimodal, visual and somatosensory neurons (56%). Both somatosensory and bimodal neurons typically responded to light touch of the skin. Their RFs were located on the face, neck, trunk, and arms. Approaching objects were the most effective visual stimuli. Visual RFs were mostly located in the space near the monkey (peripersonal space). Typically they extended in the space adjacent to the tactile RFs. 2. The coordinate system in which visual RFs were coded was studied in 110 neurons. In 94 neurons the RF location was independent of eye position, remaining in the same position in the peripersonal space regardless of eye deviation. The RF location with respect to the monkey was not modified by changing monkey position in the recording room. In 10 neurons the RF's location followed the eye movements, remaining in the same retinal position (retinocentric RFs). For the remaining six neurons the RF organization was not clear. We will refer to F4 neurons with RF independent of eye position as somatocentered neurons. 3. In most somatocentered neurons (43 of 60 neurons) the background level of activity and the response to visual stimuli were not modified by changes in eye position, whereas they were modulated in the remaining 17. It is important to note that eye deviations were constantly accompanied by a synergic increase of the activity of the ipsilateral neck muscles. It is not clear, therefore, whether the modulation of neuron discharge depended on eye position or was a consequence of changes in neck muscle activity. 4. The effect of stimulus velocity (20-80 cm/s) on neuron response intensity and RF extent in depth was studied in 34 somatocentered neurons. The results showed that in most neurons the increase of stimulus velocity produced an expansion in depth of the RF. 5. We conclude that space is coded differently in areas that control somatic and eye movements. We suggest that space coding in different cortical areas depends on the computational necessity of the effectors they control.
Similar articles
-
Ventral intraparietal area of the macaque: congruent visual and somatic response properties.J Neurophysiol. 1998 Jan;79(1):126-36. doi: 10.1152/jn.1998.79.1.126. J Neurophysiol. 1998. PMID: 9425183
-
Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus.J Neurophysiol. 1996 Jan;75(1):439-53. doi: 10.1152/jn.1996.75.1.439. J Neurophysiol. 1996. PMID: 8822569
-
Visuospatial properties of ventral premotor cortex.J Neurophysiol. 1997 May;77(5):2268-92. doi: 10.1152/jn.1997.77.5.2268. J Neurophysiol. 1997. PMID: 9163357
-
Functional organization of inferior area 6.Ciba Found Symp. 1987;132:171-86. doi: 10.1002/9780470513545.ch11. Ciba Found Symp. 1987. PMID: 3322714 Review.
-
A physiological perspective on fixational eye movements.Vision Res. 2016 Jan;118:31-47. doi: 10.1016/j.visres.2014.12.006. Epub 2014 Dec 20. Vision Res. 2016. PMID: 25536465 Free PMC article. Review.
Cited by
-
That's near my hand! Parietal and premotor coding of hand-centered space contributes to localization and self-attribution of the hand.J Neurosci. 2012 Oct 17;32(42):14573-82. doi: 10.1523/JNEUROSCI.2660-12.2012. J Neurosci. 2012. PMID: 23077043 Free PMC article. Clinical Trial.
-
Visual response of ventrolateral prefrontal neurons and their behavior-related modulation.Sci Rep. 2021 May 12;11(1):10118. doi: 10.1038/s41598-021-89500-0. Sci Rep. 2021. PMID: 33980932 Free PMC article.
-
Allocentric and egocentric manipulations of the sense of self-location in full-body illusions and their relation with the sense of body ownership.Cogn Process. 2015 Sep;16 Suppl 1:309-12. doi: 10.1007/s10339-015-0667-z. Cogn Process. 2015. PMID: 26220702 Review.
-
Attention's grasp: early and late hand proximity effects on visual evoked potentials.Front Psychol. 2013 Jul 12;4:420. doi: 10.3389/fpsyg.2013.00420. eCollection 2013. Front Psychol. 2013. PMID: 23874315 Free PMC article.
-
Grasping actions and social interaction: neural bases and anatomical circuitry in the monkey.Front Psychol. 2015 Jul 14;6:973. doi: 10.3389/fpsyg.2015.00973. eCollection 2015. Front Psychol. 2015. PMID: 26236258 Free PMC article. Review.
MeSH terms
LinkOut - more resources
Full Text Sources