Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 Jun;3(2):143-65.
doi: 10.3109/10739689609148284.

The role of mechanical stresses in microvascular remodeling

Affiliations
Review

The role of mechanical stresses in microvascular remodeling

T C Skalak et al. Microcirculation. 1996 Jun.

Abstract

The microvasculature is an extremely adaptable structure that is capable of architectural and functional adjustments in response to multiple biochemical and mechanical stimuli. Inadequate or inappropriate adjustments often result in pathophysiology. Recent work has brought increasing recognition of the importance of microvascular remodeling in widespread disease states such as hypertension, tumor growth, diabetes, and progressive coronary artery occlusion. Much work has been done to characterize the cells and molecules with putative roles in microvascular remodeling, but little is known regarding the mechanotransduction processes that might link hemodynamic stresses such as wall shear stress and circumferential wall stress to structural and functional changes in vivo. Two primary approaches have been employed: in vitro studies that use cultured cells and allow molecular biologic analysis of signaling pathways and gene expression; and in vivo experiments aimed at understanding vessel adaptations in the intact tissue. This article reviews the structural adaptations exhibited by microvessels and the information available from in vitro and in vivo approaches. The formation of new arterioles in intact tissues is examined in detail as an example of integrative work, and the prospects for new technologies are discussed. This is a time of great opportunity for bidirectional exchange between basic in vitro advances and in vivo experimentation. This exchange will be essential in generating new understanding of the role of mechanical stresses in microvascular remodeling.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources