Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct 1;35(39):12864-72.
doi: 10.1021/bi960991m.

Purification and spectroscopic characterization of photosystem II reaction center complexes isolated with or without Triton X-100

Affiliations
Free article

Purification and spectroscopic characterization of photosystem II reaction center complexes isolated with or without Triton X-100

C Eijckelhoff et al. Biochemistry. .
Free article

Abstract

The pigment composition of the isolated photosystem II reaction center complex in its most stable and pure form currently is a matter of considerable debate. In this contribution, we present a new method based on a combination of gel filtration chromatography and diode array detection to analyze the composition of photosystem II reaction center preparations. We show that the method is very sensitive for the detection of contaminants such as the core antenna protein CP47, pigment-free and denatured reaction center proteins, and unbound chlorophyll and pheophytin molecules. We also present a method by which the photosystem II reaction center complex is highly purified without using Triton X-100, and we show that in this preparation the contamination with CP47 is less than 0.1%. The results strongly indicate that the photosystem II reaction center complex in its most stable and pure form binds six chlorophyll a, two pheophytin a, and two beta-carotene molecules and that the main effect of Triton X-100 is the extraction of beta-carotene from the complex. Analysis of 4 K absorption and emission spectra indicates that the spectroscopic properties of this preparation are similar to those obtained by a short Triton X-100 treatment. In contrast, preparations obtained by long Triton X-100 treatment show decreased absorption of the shoulder at 684 nm in the 4 K absorption spectrum and an increased number of pigments that trap excitation energy at very low temperatures. We conclude that the 684 nm shoulder in the 4 K absorption spectrum should at least in part be attributed to the primary electron donor of photosystem II.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources