Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Dec;15(6):1287-98.
doi: 10.1016/0896-6273(95)90008-x.

GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis

Affiliations
Free article

GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis

J J LoTurco et al. Neuron. 1995 Dec.
Free article

Abstract

We have found that, during the early stages of cortical neurogenesis, both GABA and glutamate depolarize cells in the ventricular zone of rat embryonic neocortex. In the ventricular zone, glutamate acts on AMPA/kainate receptors, while GABA acts on GABAA receptors. GABA induces an inward current at resting membrane potentials, presumably owing to a high intracellular Cl- concentration maintained by furosemide-sensitive Cl- transport. GABA and glutamate also produce increases in intracellular Ca2+ in ventricular zone cells, in part through activation of voltage-gated Ca2+ channels. Furthermore, GABA and glutamate decrease the number of embryonic cortical cells synthesizing DNA. Depolarization with K+ similarly decreases DNA synthesis, suggesting that the neurotransmitters act via membrane depolarization. Applied alone, GABAA and AMPA/kainate receptor antagonists increase DNA synthesis, indicating that endogenously released amino acids influence neocortical progenitors in the cell cycle. These results demonstrate a novel role for amino acid neurotransmitters in regulating neocortical neurogenesis.

PubMed Disclaimer

Publication types

LinkOut - more resources