Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Dec 1;489 ( Pt 2)(Pt 2):349-62.
doi: 10.1113/jphysiol.1995.sp021056.

Raised intracellular [Ca2+] abolishes excitation-contraction coupling in skeletal muscle fibres of rat and toad

Affiliations

Raised intracellular [Ca2+] abolishes excitation-contraction coupling in skeletal muscle fibres of rat and toad

G D Lamb et al. J Physiol. .

Abstract

1. Raising the intracellular [Ca2+] for 10 s at 23 degrees C abolished depolarization-induced force responses in mechanically skinned muscle fibres of toad and rat (half-maximal effect at 10 and 23 microM, respectively), without affecting the ability of caffeine or low [Mg2+] to open the ryanodine receptor (RyR)/Ca2+ release channels. Thus, excitation-contraction coupling was lost, even though the Ca2+ release channels were still functional. Coupling could not be restored in the duration of an experiment (up to 1 h). 2. The Ca(2+)-dependent uncoupling had a Q10 > 3.5, and was three times slower at pH 5.8 than at pH 7.1. Sr2+ caused similar uncoupling at twenty times higher concentration, but Mg2+, even at 10 mM, was ineffective. Uncoupling was not noticeably affected by removal of ATP or application of protein kinase or phosphatase inhibitors. 3. Confocal laser scanning microscopy showed that the transverse tubular system was sealed in its entirety in mechanically skinned fibres and that its integrity was maintained in uncoupled fibres. Electron microscopy revealed distorted or severed triad junctions and Z-line aberrations in uncoupled fibres. 4. Only when uncoupling was induced at a relatively slow rate (e.g. over 60 s with 2.5 microM Ca2+) could it be prevented by the protease inhibitor leupeptin (1 mM). Immunostaining of Western blots showed no evidence of proteolysis of the RyR, the alpha 1-subunit of dihydropyridine receptor (DHPR) or triadin in uncoupled fibres. 5. Fibres which, whilst intact, were stimulated repeatedly by potassium depolarization with simultaneous application of 30 mM caffeine showed reduced responsiveness after skinning to depolarization but not to caffeine. Rapid release of endogenous Ca2+, or raised [Ca2+] under conditions which minimized the loss of endogenous diffusible myoplasmic molecules from the skinned fibre, caused complete uncoupling. Taken together, these results suggest that Ca(2+)-dependent uncoupling can also occur in intact fibres. 6. This Ca(2+)-dependent loss of depolarization-induced Ca2+ release may play an important feedback role in muscle by stopping Ca2+ release in localized areas where it is excessive and may be responsible for long-lasting muscle fatigue after severe exercise, as well as contributing to muscle weakness in various dystrophies.

PubMed Disclaimer

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. J Physiol. 1977 Nov;272(3):769-78 - PubMed
    1. Comp Biochem Physiol C. 1980;65(2):143-5 - PubMed
    1. J Muscle Res Cell Motil. 1980 Mar;1(1):89-100 - PubMed
    1. Anal Biochem. 1984 Jan;136(1):175-9 - PubMed

Publication types

LinkOut - more resources