Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Dec;69(4):1253-62.
doi: 10.1016/0306-4522(95)00318-d.

Co-existence of NADPH-diaphorase, fibroblast growth factor-2 and fibroblast growth factor receptor in spinal autonomic system suggests target-specific actions

Affiliations

Co-existence of NADPH-diaphorase, fibroblast growth factor-2 and fibroblast growth factor receptor in spinal autonomic system suggests target-specific actions

C Stapf et al. Neuroscience. 1995 Dec.

Abstract

In the rat spinal cord, we found substantial co-existence of fibroblast growth factor-2, fibroblast growth factor receptor (type-1 or flg) immunoreactivity and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity (a histochemical marker for neuronal nitric oxide synthase) in preganglionic autonomic cell groups of intermediate layers VI, VII and X. Anti-fibroblast growth factor-2 and anti-nitric oxide synthase binding sites were confined to the cytoplasm of reactive neurons as judged by immunogold electron microscopy. Within the major autonomic nucleus, i.e. intermediolateral column, three different populations were identified: (i) fibroblast growth factor and fibroblast growth factor receptor, (ii) fibroblast growth factor/NADPH-diaphorase and (iii) NADPH-diaphorase-only stained cell groups. Sympathoadrenal neurons were prelabelled with fluorescent tracer Fast Blue and co-stained for fibroblast growth factor-like protein and NADPH-diaphorase, suggesting heterologous diversification of neuronal phenotypes and functional organization in the spinal autonomic system. Our findings suggest intriguing roles for nitric oxide and fibroblast growth factor-2 cytokine in the preganglionic sympathetic spinal cord system: The "short-term" diffusible messenger nitric oxide may act as "tonic" and/or "phasic" signal within rostrocaudally oriented function-specific preganglionic units necessary for integrated target control. The "long-term" messenger fibroblast growth factor-2 may be involved in, for example, cytokine-dependent regulation of neuronal NADPH-diaphorase/nitric oxide synthase. Furthermore, co-existence of NADPH-diaphorase, fibroblast growth factor-2 and receptor in sympathoadrenal neurons suggest mutual target-specific regulatory functions, e.g. hormone release and blood perfusion or maintenance of phenotype and plasticity responsiveness of adrenal medullary tissue.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources