Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jun 21;159(2):105-14.
doi: 10.1007/BF00420912.

Oxidative damage to sarcoplasmic reticulum Ca(2+)-pump induced by Fe2+/H2O2/ascorbate is not mediated by lipid peroxidation or thiol oxidation and leads to protein fragmentation

Affiliations

Oxidative damage to sarcoplasmic reticulum Ca(2+)-pump induced by Fe2+/H2O2/ascorbate is not mediated by lipid peroxidation or thiol oxidation and leads to protein fragmentation

R F Castilho et al. Mol Cell Biochem. .

Abstract

The major protein in the sarcoplasmic reticulum (SR) membrane is the Ca2+ transporting ATPase which carries out active Ca2+ pumping at the expense of ATP hydrolysis. The aim of this work was to elucidate the mechanisms by which oxidative stress induced by Fenton's reaction (Fe(2+)+H2O2-->HO.+OH-+Fe3+) alters the function of SR. ATP hydrolysis by both SR vesicles (SRV) and purified ATPase was inhibited in a dose-dependent manner in the presence of 0-1.5 mM H2O2 plus 50 microM Fe2+ and 6 mM ascorbate. Ca2+ uptake carried out by the Ca(2+)-ATPase in SRV was also inhibited in parallel. The inhibition of hydrolysis and Ca2+ uptake was not prevented by butylhydroxytoluene (BHT) at concentrations which significantly blocked formation of thiobarbituric acid-reactive substances (TBARS), suggesting that inhibition of the ATPase was not due to lipid peroxidation of the SR membrane. In addition, dithiothreitol (DTT) did not prevent inhibition of either ATPase activity or Ca2+ uptake, suggesting that inhibition was not related to oxidation of ATPase thiols. The passive efflux of 45Ca2+ from pre-loaded SR vesicles was greatly increased by oxidative stress and this effect could be only partially prevented (ca 20%) by addition of BHT or DTT. Trifluoperazine (which specifically binds to the Ca(2+)-ATPase, causing conformational changes in the enzyme) fully protected the ATPase activity against oxidative damage. These results suggest that the alterations in function observed upon oxidation of SRV are mainly due to direct effects on the Ca(2+)-ATPase. Electrophoretic analysis of oxidized Ca(2+)-ATPase revealed a decrease in intensity of the silver-stained 110 kDa Ca(2+)-ATPase band and the appearance of low molecular weight peptides (MW < 100 kDa) and high molecular weight protein aggregates. Presence of DTT during oxidation prevented the appearance of protein aggregates and caused a simultaneous increase in the amount of low molecular weight peptides. We propose that impairment of function of the Ca(2+)-pump may be related to aminoacid oxidation and fragmentation of the protein.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1987 Jul 15;262(20):9908-13 - PubMed
    1. Biochim Biophys Acta. 1989 Sep 4;984(2):151-7 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Biochem Pharmacol. 1992 Nov 3;44(9):1795-801 - PubMed
    1. J Biol Chem. 1990 Nov 15;265(32):19955-60 - PubMed

Publication types

MeSH terms

LinkOut - more resources