Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct;67(4):1559-65.
doi: 10.1046/j.1471-4159.1996.67041559.x.

Accumulation of DNA damage in aging neurons occurs through a mechanism other than apoptosis

Affiliations

Accumulation of DNA damage in aging neurons occurs through a mechanism other than apoptosis

B S Mandavilli et al. J Neurochem. 1996 Oct.

Abstract

Two biochemical strategies using nick translation-type of incubation and terminal tranferase-catalyzed reaction were used to assess single-(SSB) and double-strand (DSB) breaks in DNA of permeabilized neurons isolated from young, adult, and old rat cerebral cortex. Both SSBs and DSBs accumulate with age. On prior treatment of neuronal cells with 1 mM glutamate or 50 microM N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), more extensive damage was seen at all ages, with the old neurons suffering maximal damage. When neuronal DNA was subjected to agarose electrophoresis, increasingly diffused bands were seen with age in normally aging neurons. However, a typical nucleosomal ladder, characteristic of apoptosis, was seen only when the cells were exposed to either glutamate or MNNG irrespective of the age of the neurons. Furthermore, this apoptotic fragmentation of DNA was prevented by prior treatment of the cells with either cycloheximide or aurintricarboxylic acid, indicating that both glutamate and MNNG induce programmed cell death. Fluorescence microscopic observation of glutamate- and MNNG-treated neurons after acridine orange staining revealed a high degree of staining and marked condensation of nuclear DNA. On the other hand, no such phenomenon was observed in normally aging neurons either histologically or in biochemical assays of damage. It is concluded that both glutamate and MNNG induce programmed cell death in neurons independent of age and that accumulation of DNA damage in naturally aging neurons occurs through a process other than that of apoptosis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources