Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996;17(2):144-53.
doi: 10.1002/(SICI)1521-186X(1996)17:2<144::AID-BEM9>3.0.CO;2-3.

Calcium homeostasis of isolated heart muscle cells exposed to pulsed high-frequency electromagnetic fields

Affiliations

Calcium homeostasis of isolated heart muscle cells exposed to pulsed high-frequency electromagnetic fields

S Wolke et al. Bioelectromagnetics. 1996.

Abstract

The intracellular calcium concentration ([Ca(2+)]i) of isolated ventricular cardiac myocytes of the guinea pig was measured during the application of pulsed high-frequency electromagnetic fields. The high-frequency fields were applied in a transverse electromagnetic cell designed to allow microscopic observation of the myocytes during the presence of the high-frequency fields. The [Ca(2+)]i was measured as fura-2 fluorescence by means of digital image analysis. Both the carrier frequency and the square-wave pulse-modulation pattern were varied during the experiments (carrier frequencies: 900, 1,300, and 1,800 MHz pulse modulated at 217Hz with 14 percent duty cycle; pulsation pattern at 900 MHz: continuous wave, 16 Hz, and 50 Hz modulation with 50 percent duty cycle and 30 kHz modulation with 80 percent duty cycle). The mean specific absorption rate (SAR) values in the solution were within one order of magnitude of 1 mW/kg. They varied depending on the applied carrier frequency and pulse pattern. The experiments were designed in three phases: 500 s of sham exposure, followed by 500 s of field exposure, then chemical stimulation without field. The chemical stimulation (K+ -depolarization) indicated the viability of the cells. The K+ depolarization yielded a significant increase in [Ca(2+)]i. Significant differences between sham exposure and high-frequency field exposure were not found except when a very small but statistically significant difference was detected in the case of 900 MHz/50 Hz. However, this small difference was not regarded as a relevant effect of the exposure.

PubMed Disclaimer

Publication types

LinkOut - more resources