Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995;89(4-6):181-93.
doi: 10.1016/0928-4257(96)83635-7.

Model experiments on squid axons and NG108-15 mouse neuroblastoma x rat glioma hybrid cells

Affiliations
Review

Model experiments on squid axons and NG108-15 mouse neuroblastoma x rat glioma hybrid cells

H Schmitt et al. J Physiol Paris. 1995.

Abstract

Three types of ionic current essentially determine the firing pattern of nerve cells: the persistent Na+ current, the M current and the low-voltage-activated Ca(2)+ current. The present article summarizes recent experiments concerned with the basic properties of these currents. Keynes and Meves (Proc R Soc Lond B (1993) 253, 61-68) studied the persistent or steady-state Na+ current on dialysed squid axons and measured the probability of channel opening both for the peak and the steady-state Na+ current (PF(peak) and PF(ss)) as a function of voltage. Whereas PF(peak) starts to rise at -50 mV and reaches a maximum at +40 to +50 mV, PF(ss) only begins to rise appreciably at around 0 mV and is still increasing at +100 mV. This differs from observations on vertebrate excitable tissues where the persistent Na+ current tums on in the threshold region and saturates at around 0 mV. Schmitt and Meves (Pflugers Arch (1993) 425, 134-139) recorded M current, a non-inactivating K+ current, from NGI08-15 neuroblastoma x glioma hybrid cells, voltage-clamped in the whole-cell mode, and studied the effects of phorbol 12,13-dibutyrate (PDB), an activator of protein kinase C (PKC), and arachidonic acid (AA). PDB and AA both decreased I(M), the effective concentrations being 0.1-1 mu M and 5-25 mu M, respectively; while the PDB effect was regularly observed, the M current depression by AA was highly variable from cell to cell. The PKC 19-31 peptide, an effective inhibitor of PKC, in a concentration of 1 muM almost totally prevented the effects of PDB and AA on M current, suggesting that both are mediated by PKC. Schmitt and Meves (Pflugers Arch (1994a) 426, Suppl R 59) measured low-voltage-activated (l-v-a) and high-voltage-activated (h-v-a) Ca2+ currents on NG108-15 cells and investigated the effect of AA and PDB on both types of current. At pulse potentials > -20 mV, AA (25-100 mu M) decreased 1-v-a and h-v-a I(Ca). The decrease was accompanied by a small negative shift and a slight flattening of the activation and inactivation curves of the l-v-a I(Ca). The AA effect was not prevented by 50 mu M eicosa-5,8,11,14-tetraynoic acid (ETYA), an inhibitor of AA metabolism, or PKC 19-31 peptide and not mimicked by 0.1-1 mu M PDB. Probably, AA acts directly on the channel protein or its lipid environment. The physiological relevance of these three sets of observations is briefly discussed.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources