Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug 1;494 ( Pt 3)(Pt 3):863-79.
doi: 10.1113/jphysiol.1996.sp021539.

Kinematic determinants of human locomotion

Affiliations

Kinematic determinants of human locomotion

N A Borghese et al. J Physiol. .

Abstract

1. The aim of this study was to find kinematic patterns that are invariant across the normal range of locomotion speeds. Subjects walked at different, freely chosen speeds ranging from 0.9 to 2.1 m s-1, while motion and ground reaction forces on the right side of the body were recorded in three-dimensional space. 2. The time course of the anatomical angles of flexion-extension at the hip and ankle was variable not only across subjects, but even from trial to trial in the same subject. By contrast, the time course of the changes in the angles of elevation of each limb segment (pelvis, thigh, shank and foot) relative to the vertical was stereotyped across subjects. 3. To compare the waveforms across speeds, data were scaled in time relative to gait cycle duration. The pattern of ground reaction forces was highly speed dependent. Several distinct families of curves could be recognized in the flexion-extension angles at the hip and ankle. Instead, the waveforms of global length and elevation of the limb, elevation angles of all limb segments and flexion-extension at the knee were invariant with speed. 4. When gait trajectories at all speeds are plotted in the position space defined by the elevation angles of the limb segments, they describe regular loops on a plane. The statistical characteristics of these angular covariations were quantified by means of principal component analysis. The first two principal components accounted together for > 99% of the total experimental variance, and were quantitatively comparable in all subjects. 5. This constraint of planar covariation of the elevation angles is closely reminiscent of that previously described for the control of posture. The existence of laws of intersegmental co-ordination, common to the control of posture and locomotion, presumably assures the maintenance of dynamic equilibrium during forward progression, and the anticipatory adaptation to potentially destabilizing factors by means of co-ordinated kinematic synergies of the whole body.

PubMed Disclaimer

References

    1. Am J Physiol. 1965 Jun;208:1047-57 - PubMed
    1. J Neurophysiol. 1993 Aug;70(2):863-6 - PubMed
    1. J Neurophysiol. 1981 May;45(5):852-68 - PubMed
    1. Biol Cybern. 1982;44(1):67-77 - PubMed
    1. Exp Brain Res. 1984;57(1):82-8 - PubMed

Publication types