Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Oct;100(4 Pt 1):2514-21.
doi: 10.1121/1.417359.

Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model

Affiliations
Comparative Study

Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model

R Maass-Moreno et al. J Acoust Soc Am. 1996 Oct.

Abstract

Temperature changes in tissue, caused by high-intensity focused ultrasound, cause time shifts in the echoes that traverse the heated tissue. These time shifts are caused by thermally induced changes in the distribution of the velocity of sound and by thermal expansion within the tissue. Our analytical model relates these shifts to changes in temperature distribution. It is proposed that these relationships can be used as a method for the noninvasive estimation of temperature within the tissue. The model shows that the echo shifts depend mostly on changes in the mean velocity along the acoustical path of the echoes and that no explicit information about the shape of the velocity distribution is required. The effects of the tissue thermal expansion are small in comparison, but may be significant under certain conditions. The theory, as well as numerical simulations, also predicts that the time shifts have an approximately linear behavior as a function of temperature. This suggests that an empirical linear delay-temperature relationship can be determined for temperature prediction. It is also shown that, alternatively, the distribution of temperature in the tissue can be estimated from the distribution of echo delays along the acoustical path. In the proposed system, low-level pulse echoes are sampled during brief periods when the high-intensity ultrasonic irradiation is off, and thus linear acoustic behavior is assumed. The possibility of nonlinear aftereffects and other disturbances limiting this approach is discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources