Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Apr;71(3):773-86.
doi: 10.1016/0306-4522(95)00447-5.

Antibodies directed against the beta 1-integrin subunit and peptides containing the IKVAV sequence of laminin perturb neurite outgrowth of peripheral neurons on immature spinal cord substrata

Affiliations

Antibodies directed against the beta 1-integrin subunit and peptides containing the IKVAV sequence of laminin perturb neurite outgrowth of peripheral neurons on immature spinal cord substrata

E Agius et al. Neuroscience. 1996 Apr.

Abstract

Neuron-substratum interactions regulating axon growth in the developing central nervous system of the rat have been studied by means of an in vitro bioassay: the tissue section culture. We have previously shown that purified chicken sensory or sympathetic neurons grown on natural substrata consisting of cryostat sections of neonatal rat spinal cord elaborate numerous long neurites [Sagot et al. (1991) Brain Res. 543, 25-35]. Perturbation experiments, in which neuron-substratum interactions are modified by antibodies and peptides, have allowed us to analyse some of the molecular determinants which control neurite outgrowth in this system. Antibodies directed against the beta 1-integrin subunit, one of the neuronal receptors for extracellular matrix molecules, reduced the percentage of growing neurons by about 30% and the length of neurites by about 50%. In contrast, antibodies directed against laminin-1 or fibronectin, two extracellular matrix proteins transiently expressed in various areas of the developing central nervous system, were unable to block neurite outgrowth. Paradoxically, a peptide containing the IKVAV sequence, which mimics an active sequence of the laminin alpha 1 chain responsible for neurite extension, also blocked neurite outgrowth on neonatal spinal cord substrata. These results indicate that integrin receptors containing the beta 1 subunit may play a role in regulating axon growth in the developing nervous system. Among the putative extracellular matrix ligands for these receptors, laminin and fibronectin do not appear as prominent candidates in the neonatal spinal cord. However, our data also suggest that the developing central nervous system may contain neurite outgrowth-promoting proteins carrying the IKVAV sequence, different from laminin-1.

PubMed Disclaimer

LinkOut - more resources