Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Jul;13(2):25-31.
doi: 10.1016/1050-3862(95)00146-8.

The construction of novel mobilizable YAC plasmids and their behavior during trans-kingdom conjugation between bacteria and yeasts

Affiliations
Comparative Study

The construction of novel mobilizable YAC plasmids and their behavior during trans-kingdom conjugation between bacteria and yeasts

A Mahmood et al. Genet Anal. 1996 Jul.

Abstract

Trans-kingdom conjugation is an easy and efficient method for gene transfer from prokaryotes to eukaryotes since it does not require DNA extraction and purification. We constructed novel mobilizable plasmids pAY-YAC-B and pAY-YAC-E. The origin of conjugal transfer (oriT) was inserted at two different positions, pAY-YAC-B contains oriT region in between two telomeres whereas pAY-YAC-E has oriT at the cloning site of pYAC4. By conjugation, both plasmids were successfully transferred from E. coli to S. cerevisiae and S. kluyveri yeasts with the aid of helper plasmid pRH220 which harbors mob and tra genes. The plasmids were transferred more efficiently in S. cerevisiae compared to S. kluyveri. The analyses by restriction enzyme digestion and Southern hybridization indicated that both plasmids maintained their original structure and size in transconjugant yeasts, therefore, reflecting the faithful nicking and subsequent resealing of plasmids during conjugation. The comparison between conjugative transfer and transformation has also been performed and discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms