Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug;25(2):117-23.
doi: 10.3109/10715769609149916.

Redox cycling of human methaemoglobin by H2O2 yields persistent ferryl iron and protein based radicals

Affiliations

Redox cycling of human methaemoglobin by H2O2 yields persistent ferryl iron and protein based radicals

R P Patel et al. Free Radic Res. 1996 Aug.

Abstract

The formation and reactivity of ferryl haemoglobin (and myoglobin), which occurs on addition of H2O2, has been proposed as a mechanism contributing to oxidative stress associated with human diseases. However, relatively little is known of the reaction between hydrogen peroxide and human haemoglobin. We have studied the reaction between hydrogen peroxide and purified (catalase free) human metHbA. Addition of H2O2 resulted in production of both ferryl haem iron (detected by optical spectroscopy) and an associated protein radical (detected by EPR spectroscopy). Titrating metHbA with H2O2 showed that maximum ferryl levels could be obtained at a 1:1 stoichiometric ratio of haem to H2O2. No oxygen was evolved during the reaction, indicating that human metHbA does itself not possess catalytic activity. The protein radicals obtained in this reaction reached a steady state concentration, during hydrogen peroxide decomposition, but started to decay once the hydrogen peroxide had been completely exhausted. The presence of catalase, at concentrations around 10(4) fold lower than metHb, increased the apparent stoichiometry of the reaction to 1 mol metHb: approximately 20 mol H2O2 and abolished the protein radical steady state. The biological implications for these results are discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources