Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription
- PMID: 8887670
- PMCID: PMC231643
- DOI: 10.1128/MCB.16.11.6419
Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription
Abstract
The RGT1 gene of Saccharomyces cerevisiae plays a central role in the glucose-induced expression of hexose transporter (HXT) genes. Genetic evidence suggests that it encodes a repressor of the HXT genes whose function is inhibited by glucose. Here, we report the isolation of RGT1 and demonstrate that it encodes a bifunctional transcription factor. Rgt1p displays three different transcriptional modes in response to glucose: (i) in the absence of glucose, it functions as a transcriptional repressor; (ii) high concentrations of glucose cause it to function as a transcriptional activator; and (iii) in cells growing on low levels of glucose, Rgt1p has a neutral role, neither repressing nor activating transcription. Glucose alters Rgt1p function through a pathway that includes two glucose sensors, Snf3p and Rgt2p, and Grr1p. The glucose transporter Snf3p, which appears to be a low-glucose sensor, is required for inhibition of Rgt1p repressor function by low levels of glucose. Rgt2p, a glucose transporter that functions as a high-glucose sensor, is required for conversion of Rgt1p into an activator by high levels of glucose. Grr1p, a component of the glucose signaling pathway, is required both for inactivation of Rgt1p repressor function by low levels of glucose and for conversion of Rgt1p into an activator at high levels of glucose. Thus, signals generated by two different glucose sensors act through Grr1p to determine Rgt1p function.
References
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases