Boundary conditions for- single-ion diffusion
- PMID: 8889150
- PMCID: PMC1233642
- DOI: 10.1016/S0006-3495(96)79374-8
Boundary conditions for- single-ion diffusion
Abstract
We have constructed a theory for diffusion through the pore of a single-ion channel by taking a limit of a random walk around a cycle of states. Similar to Levitt's theory of single-ion diffusion, one obtains boundary conditions for the Nernst-Planck equation that guarantee that the pore is occupied by at most one ion. Two of the terms in the boundary conditions are identical to those given by Levitt. However, the construction gives rise to a third term not found in Levitt's theory. With this term, the channel spends exponentially distributed intervals in the empty state. Ion sample paths have been simulated to help visualize trajectories near the channel entrances, with and without the new term. We use the modified Levitt theory to fit several potential profiles to the conductance data of Russell et al. In particular, we have analyzed the profile for Na+ in gramicidin calculated by Roux and Karplus. The peak-to-peak amplitude of their result must be reduced to at most 35% of its original value to fit the data. But with this reduction, excellent fits are obtained.
Similar articles
-
Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels.Biophys J. 1987 Jul;52(1):33-45. doi: 10.1016/S0006-3495(87)83186-7. Biophys J. 1987. PMID: 2440492 Free PMC article.
-
Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.Biophys J. 1997 Jan;72(1):97-116. doi: 10.1016/S0006-3495(97)78650-8. Biophys J. 1997. PMID: 8994596 Free PMC article.
-
Water transport and ion-water interaction in the gramicidin channel.Biophys J. 1981 Aug;35(2):501-8. doi: 10.1016/S0006-3495(81)84805-9. Biophys J. 1981. PMID: 6168311 Free PMC article.
-
Can we use rate constants and state models to describe ion transport through gramicidin channels?Novartis Found Symp. 1999;225:93-107; discussion 107-12. doi: 10.1002/9780470515716.ch7. Novartis Found Symp. 1999. PMID: 10472050 Review.
-
Multiple conductance states of the sodium channel and of other ion channels.Biochim Biophys Acta. 1989 Jan 18;988(1):99-105. doi: 10.1016/0304-4157(89)90005-1. Biochim Biophys Acta. 1989. PMID: 2462450 Review. No abstract available.
Cited by
-
Renormalizing SMD: the renormalization approach and its use in long time simulations and accelerated PMF calculations of macromolecules.J Phys Chem B. 2010 Oct 7;114(39):12720-8. doi: 10.1021/jp1056122. J Phys Chem B. 2010. PMID: 20836533 Free PMC article.
-
Statistical mechanical equilibrium theory of selective ion channels.Biophys J. 1999 Jul;77(1):139-53. doi: 10.1016/S0006-3495(99)76878-5. Biophys J. 1999. PMID: 10388746 Free PMC article.
-
A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.Biophys J. 2000 Aug;79(2):788-801. doi: 10.1016/S0006-3495(00)76336-3. Biophys J. 2000. PMID: 10920012 Free PMC article.
-
A microscopic view of ion conduction through the K+ channel.Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8644-8. doi: 10.1073/pnas.1431750100. Epub 2003 Jul 1. Proc Natl Acad Sci U S A. 2003. PMID: 12837936 Free PMC article.
-
Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels.Biophys J. 1998 Dec;75(6):2830-44. doi: 10.1016/S0006-3495(98)77726-4. Biophys J. 1998. PMID: 9826605 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources