Evidence that aspartate-85 has a higher pK(a) in all-trans than in 13-cisbacteriorhodopsin
- PMID: 8889171
- PMCID: PMC1233663
- DOI: 10.1016/S0006-3495(96)79395-5
Evidence that aspartate-85 has a higher pK(a) in all-trans than in 13-cisbacteriorhodopsin
Abstract
Three experimental observations indicate that the pK(a) of the purple-to-blue transition (the pK(a) of Asp-85) is higher for all-trans-bR(1) than for 13-cis-bR. First, light adaptation of bacteriorhodopsin (bR) at pHs near the pK(a) of Asp-85 causes an increase in the fraction of the blue membrane present. This transformation is reversible in the dark. Second, the pK(a) of the purple-to-blue transition in the dark is lower than that in the light-adapted bR (pK(a)(DA) = 3.5, pK(a)(LA) = 3.8 in 10 microM K(2)SO(4)). Third, the equilibrium fractions of 13-cis and all-trans isomers are pH dependent; the fraction of all-trans-bR increases upon formation of the blue membrane. Based on the conclusion that thermal all-trans <=> 13-cis isomerization occurs in the blue membrane rather than in the purple, we have developed a simple model that accounts for all three observations. From the fit of experimental data we estimate that the pK(a) of Asp-85 in 13-cis-bR is 0.5 +/- 0.1 pK(a) unit less than the pK(a) of all-trans-bR. Thus in 10 microM K(2)SO(4), pK(a)(c) = 3.3, whereas pK(a)(t) = 3.8.
Similar articles
-
All-trans to 13-cis retinal isomerization in light-adapted bacteriorhodopsin at acidic pH.J Photochem Photobiol B. 2002 Apr;66(3):188-94. doi: 10.1016/s1011-1344(02)00245-2. J Photochem Photobiol B. 2002. PMID: 11960728
-
Uv-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation.Proc Natl Acad Sci U S A. 1990 Dec;87(24):9873-7. doi: 10.1073/pnas.87.24.9873. Proc Natl Acad Sci U S A. 1990. PMID: 2263638 Free PMC article.
-
Photoconversion from the light-adapted to the dark-adapted state of bacteriorhodopsin.Biophys J. 1985 Aug;48(2):201-8. doi: 10.1016/S0006-3495(85)83773-5. Biophys J. 1985. PMID: 4052558 Free PMC article.
-
Structure and function of bacteriorhodopsin.Adv Biophys. 1988;24:123-75. doi: 10.1016/0065-227x(88)90006-8. Adv Biophys. 1988. PMID: 3077237 Review.
-
Different proposed applications of bacteriorhodopsin.Recent Pat DNA Gene Seq. 2011 Apr;5(1):35-40. doi: 10.2174/187221511794839273. Recent Pat DNA Gene Seq. 2011. PMID: 21306298 Review.
Cited by
-
Combined kinetic and thermodynamic analysis of alpha-helical membrane protein unfolding.Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18970-5. doi: 10.1073/pnas.0705067104. Epub 2007 Nov 19. Proc Natl Acad Sci U S A. 2007. PMID: 18025476 Free PMC article.
-
Brighter than the sun: Rajni Govindjee at 80 and her fifty years in photobiology.Photosynth Res. 2015 Apr;124(1):1-5. doi: 10.1007/s11120-015-0106-0. Epub 2015 Mar 5. Photosynth Res. 2015. PMID: 25739899
-
Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle.Biochemistry. 2014 Dec 9;53(48):7549-61. doi: 10.1021/bi501064n. Epub 2014 Nov 24. Biochemistry. 2014. PMID: 25375769 Free PMC article.
-
A Schiff base connectivity switch in sensory rhodopsin signaling.Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16159-64. doi: 10.1073/pnas.0807486105. Epub 2008 Oct 13. Proc Natl Acad Sci U S A. 2008. PMID: 18852467 Free PMC article.
-
Photochemistry in dried polymer films incorporating the deionized blue membrane form of bacteriorhodopsin.Biophys J. 1998 Oct;75(4):1619-34. doi: 10.1016/S0006-3495(98)77605-2. Biophys J. 1998. PMID: 9746505 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources