Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Nov;64(11):4726-32.
doi: 10.1128/iai.64.11.4726-4732.1996.

Analysis of complement C3 deposition and degradation on Klebsiella pneumoniae

Affiliations
Comparative Study

Analysis of complement C3 deposition and degradation on Klebsiella pneumoniae

S Albertí et al. Infect Immun. 1996 Nov.

Abstract

The majority of Klebsiella pneumoniae serum-resistant strains activate complement and bind C3b, the opsonic fragment of C3, without C5b-9 formation and bacterial killing. The mechanisms leading to C3b deposition without cell death were studied, and the results indicate that serum-resistant strains activate principally the alternative pathway and that serum-sensitive strains activate both the alternative and classical pathways. Bacterial molecules implicated in C3b deposition are the outer membrane porin proteins and smooth and rough lipopolysaccharides. Porins activate both complement pathways, and the rough lipopolysaccharide activates the classical pathway, causing deposition of C3b in serum-sensitive strains. The smooth lipopolysaccharide of serum-resistant strains activates only the alternative pathway, impeding the binding of C1q to porins (S. Albertí, G. Marqués, S. Camprubí, S. Merino, J. M. Tomás, F. Vivanco, and V. J. Benedí, Infect. Immun. 61:852-860, 1993; S. Albertí, F. Rodríguez-Quinónes, T. Schirmer, G. Rummel, J. M. Tomás, J. P. Rosenbusch, and V. J. Benedí, Infect. Immun. 63:903-910, 1995) and rough lipopolysaccharide molecules and thereby preventing activation of the classical pathway. After its deposition, C3b is quickly degraded to iC3b on both types of strains, but the higher-level deposition of C3b on serum-sensitive strains, resulting from activation of both the alternative and classical complement pathways, supports further complement activation and killing of serum-sensitive strains.

PubMed Disclaimer

References

    1. Mol Immunol. 1980 Mar;17(3):327-36 - PubMed
    1. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4 - PubMed
    1. J Immunol Methods. 1982;50(2):227-31 - PubMed
    1. Microbiol Rev. 1983 Mar;47(1):46-83 - PubMed
    1. Methods Enzymol. 1983;97:85-100 - PubMed

Publication types

LinkOut - more resources