Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Sep;76(3):1828-35.
doi: 10.1152/jn.1996.76.3.1828.

D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors

Affiliations

D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors

A Akopian et al. J Neurophysiol. 1996 Sep.

Abstract

1. Using the whole cell patch clamp method, we investigated the effect of dopamine on a hyperpolarization-activated current (Ih) in the inner segments of rod photoreceptors of the Xenopus retina. 2. Ih was elicited by hyperpolarizing voltage steps to -120 mV from a holding potential of -40 mV. Dopamine reversibly reduced Ih in a dose-dependent manner. Dopamine-mediated inhibition of Ih was blocked by the D2 dopamine antagonist sulpiride. 3. The D2 dopamine agonist quinpirole (0.1-20 microM) inhibited Ih whereas the D1 agonist SKF-38393 (100 microM) had no effect on Ih. Quinpirole-induced inhibition of Ih was blocked by sulpiride, but not by the D4 antagonist, clozapine. The D3 agonists (+/-)-7-hydroxy-2-dipropylaminotetralin hydrochloride and trans-7-hydroxy-2[N-propyl-N-(3'-iodo-2'-propenyl)amino]-tetralin maleate were, respectively, 5 and 100 times less effective than quinpirole in inhibiting Ih. 4. Quinpirole failed to reduce Ih when the internal solution contained GDP beta S (500 microM). Internal application GTP gamma S (300 microM) progressively and irreversibly reduced Ih and blocked a further reduction by quinpirole, indicating that the inhibition of Ih by quinpirole involves a G protein. 5. The inhibition of Ih by quinpirole was not affected by intracellularly applied adenosine 3',5'-cyclic monophosphate (cAMP) or by the protein kinase inhibitor H-7, indicating that a cAMP-mediated second messenger cascade does not participate in the dopamine-mediated inhibition. 6. Ih was not altered when the patch pipette contained a nominally Ca(2+)-free internal solution, but the inhibition of Ih by quinpirole was abolished, suggesting an involvement of Ca(2+) in the quinpirole-induced effect. 7. We conclude that a D2 dopamine receptor modulates Ih through the activation of a G protein and that intracellular Ca2+, but not cAMP, plays a key role in this process. 8. The reduction of Ih by dopamine may reduce the ability of rods to signal time-modulated light stimuli.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources