Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov;10(11):1731-40.

Intracellular metabolism of Ara-C and resulting DNA fragmentation and apoptosis of human AML HL-60 cells possessing disparate levels of Bcl-2 protein

Affiliations
  • PMID: 8892676

Intracellular metabolism of Ara-C and resulting DNA fragmentation and apoptosis of human AML HL-60 cells possessing disparate levels of Bcl-2 protein

G Bullock et al. Leukemia. 1996 Nov.

Abstract

We examined the effects of high intracellular levels of Bcl-2 on the metabolism and DNA incorporation of high-dose Ara-C (HIDAC) as well as on Ara-C-induced DNA strand breaks and apoptosis of human AML HL-60 cells. HL-60/Bcl-2 and HL-60/neo cells were created by retrovirally transfecting the human AML HL-60 cells with the pZip-bcl-2 and pZip-neo plasmids, respectively. As compared to HL-60/neo, HL-60/Bcl-2 cells contained significantly higher (approximately 10-fold) p26Bcl-2, but equivalent levels of Bax and undetectable levels of Bcl-xL. HIDAC (10 or 100 microM for 4 h) produced the kilobase size and internucleosomal DNA fragmentation associated with apoptosis in HL-60/neo but not in HL-60/Bcl-2 cells. Significantly greater loss of survival (by MTT assay) and flowcytometric and morphologically recognizable apoptosis were observed in HL-60/neo cells. HIDAC did not affect Bcl-2 levels in either cell type. The intracellular accumulation of Ara-CTP relative to dCTP, Ara-C DNA incorporation and Ara-C-induced early DNA damage in the form of strand breaks (detected by alkaline elution assay) were not significantly different between HL-60/Bcl-2 and HL-60/neo cells. In addition, HIDAC treatment caused similar DNA synthesis inhibition in the two cell types. These results indicate that high intracellular levels of Bcl-2 operate distally to inhibit the final apototic cell death pathway by preventing the conversion of HIDAC-induced early DNA damage into lethal DNA fragmentation associated with apoptosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources