Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct 15;10(20):2540-50.
doi: 10.1101/gad.10.20.2540.

Assembly of the isomerized TFIIA--TFIID--TATA ternary complex is necessary and sufficient for gene activation

Affiliations
Free article

Assembly of the isomerized TFIIA--TFIID--TATA ternary complex is necessary and sufficient for gene activation

T Chi et al. Genes Dev. .
Free article

Abstract

The prevailing view of eukaryotic gene activation poses that activators stimulate transcription by recruiting limiting components of the general transcription machinery to a core promoter. In one such model case, activation by the Epstein-Barr virus ZEBRA protein correlated closely with recruitment of the general transcription factors TFIIA and TFIID (the DA complex) as measured by DNase I footprinting and gel mobility shift assays. We now report that simple recruitment is not sufficient for full-level activation. An additional concentration-independent, rate-limiting step is activator-mediated isomerization of the DA complex characterized by an extended TFIID footprint. The isomerized complex supports both binding of TFIIB in gel mobility shift assays and activated transcription in heat-treated nuclear extracts, even after removal of ZEBRA. Surprisingly, the regulatory phenomenon of synergy was manifested only when the concentration of TFIID was limiting. When the DA complex was saturating, transcription was not synergistic, as indicated by the ability of a single activator to induce isomerization effectively and turn on a gene. On the basis of these observations, we propose a new biochemical model for eukaryotic gene activation and synergy.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources