Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Aug;21(8):889-95.
doi: 10.1007/BF02532337.

Nigericin-induced Na+/H+ and K+/H+ exchange in synaptosomes: effect on [3H]GABA release

Affiliations

Nigericin-induced Na+/H+ and K+/H+ exchange in synaptosomes: effect on [3H]GABA release

R Rodríguez et al. Neurochem Res. 1996 Aug.

Abstract

The effect of the putative K+/H+ ionophore, nigericin on the internal Na+ concentration ([Nai]), the internal pH (pHi), the internal Ca2+ concentration ([Cai]) and the baseline release of the neurotransmitter, GABA was investigated in Na+-binding benzofuran isophtalate acetoxymethyl ester (SBFI-AM), 2',7'-bis(carboxyethyl)-5(6) carboxyfluorescein acetoxymethyl ester (BCECF-AM, fura-2 and [3H]GABA loaded synaptosomes, respectively. In the presence of Na+ at a physiological concentration (147 mM), nigericin (0.5 microM) elevates [Nai] from 20 to 50 mM, increases the pHi, 0.16 pH units, elevates four fold the [Cai] at expense of external Ca2+ and markedly increases (more than five fold) the release of [3H]GABA. In the absence of a Na+ concentration gradient (i.e. when the external Na+ concentration equals the [Nai]), the same concentration (0.5 microM) of nigericin causes the opposite effect on the pHi (acidifies the synaptosomal interior), does not modify the [Nai] and is practically unable to elevate the [Cai] or to increase [3H]GABA release. Only with higher concentrations of nigericin than 0.5 microM the ionophore is able to elevate the [Cai] and to increase the release of [3H]GABA under the conditions in which the net Na+ movements are eliminated. These results clearly show that under physiological conditions (147 mM external Na+) nigericin behaves as a Na+/H+ ionophore, and all its effects are triggered by the entrance of Na+ in exchange for H+ through the ionophore itself. Nigericin behaves as a K+/H+ ionophore in synaptosomes just when the net Na+ movements are eliminated (i.e. under conditions in which the external and the internal Na+ concentrations are equal). In summary care must be taken when using the putative K+/H+ ionophore nigericin as an experimental tool in synaptosomes, as under standard conditions (i.e. in the presence of high external Na+) nigericin behaves as a Na+/H+ ionophore.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Prog Neurobiol. 1992;38(1):57-91 - PubMed
    1. J Neurochem. 1991 Oct;57(4):1270-5 - PubMed
    1. J Neurochem. 1993 Sep;61(3):818-25 - PubMed
    1. Brain Res. 1975 Aug 15;93(3):485-9 - PubMed
    1. J Neurochem. 1989 Aug;53(2):442-7 - PubMed

Publication types

LinkOut - more resources