Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct;271(4 Pt 1):G568-74.
doi: 10.1152/ajpgi.1996.271.4.G568.

Regulation of VIP release from rat enteric nerve terminals: evidence for a stimulatory effect of NO

Affiliations

Regulation of VIP release from rat enteric nerve terminals: evidence for a stimulatory effect of NO

H D Allescher et al. Am J Physiol. 1996 Oct.

Abstract

The basal release of vasoactive intestinal polypeptide (VIP) from freshly prepared enriched synaptosomes was 159.1 +/- 17.3 fmol/mg protein (100%), which constituted 2.5% of the total VIP content. Basal VIP release was reduced by 65% by removal of external Ca2+. Release of VIP was stimulated by depolarization with KCl (65 mM, 143%) and in the presence of veratridine (10(-6) M, 184%), monensin (10(-5) M, 131%), and the Ca2+ ionophore A-23187 (10(-6) M, 160%). Stimulation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent mechanisms using isoproterenol (10(-6)-10(-4) M) and forskolin (10(-6) and 10(-5) M) had no stimulatory influence on VIP release. In contrast, sodium nitroprusside (10(-4) M, 198%), the nitric oxide (NO) donor 3-(morpholino)sydnonimine (10(-4) M, 155%), and the guanosine 3',5'-cyclic monophosphate (cGMP) analogue 8-bromo cGMP (10(-4) M, 196%) caused a significant release of VIP. L-Arginine (10(-3) M, 246%) also caused a significant increase of VIP release that was antagonized by the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (5 x 10(-4) M, 131%), which had no effect when given alone. The results demonstrate that VIP can be released from enriched synaptosomes by Ca(2+)-dependent mechanisms by NO agonists or NO-dependent mechanisms. It is speculated that this VIP release is induced by a presynaptic stimulatory mechanism of NO and this effect could enhance or contribute to the action of NO.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources