Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct;271(4 Pt 1):L601-8.
doi: 10.1152/ajplung.1996.271.4.L601.

Effects of inflammation and acute beta-agonist inhalation on beta 2-AR signaling in human airways

Affiliations

Effects of inflammation and acute beta-agonist inhalation on beta 2-AR signaling in human airways

R B Penn et al. Am J Physiol. 1996 Oct.

Abstract

Although alterations in beta 2-adrenergic receptor (AR) responsiveness may in part explain reports linking deterioration of asthma control with beta-agonist treatment of asthmatics, few data exist on beta 2-AR regulation in human airway cells. We have employed a bronchoscopy model to examine inflammation- and beta-agonist-induced alterations in human bronchial epithelial cell beta 2-AR density and responsiveness. Allergic asthmatic subjects participated in 2-day protocols examining airways before and 24 h after segmental antigen challenge (SAC) with ragweed. To assess the effect of acute beta-agonist exposure, bronchoscopies were performed both with (+ beta-Ag) and without (-beta-Ag) inhalation of beta-agonist 30 min before the procedure. Measurements of inflammatory cell infiltration were obtained by analysis of bronchoalveolar lavage fluid, and beta 2-AR density and responsiveness were examined in bronchial epithelial cells obtained by bronchoscopic brushing. Neither SAC nor acute beta-agonist administration alone significantly affected epithelial cell beta 2-AR density. beta-Agonist-stimulated adenosine 3', 5'-cyclic monophosphate (cAMP) generation was significantly lower in the + beta-Ag groups compared with the-beta-Ag group, demonstrating acute agonist-specific beta 2-AR desensitization in vivo. SAC caused a small, statistically insignificant reduction in beta-Agonist-stimulated cAMP production in both -beta-Ag or + beta-Ag groups. These lata suggest that acute beta-agonist inhalation, but not airway inflammation, significantly reduces maximal beta 2-AR responsiveness in airway cells.

PubMed Disclaimer

Publication types

LinkOut - more resources