Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein
- PMID: 8898195
- DOI: 10.1016/s0092-8674(00)81362-8
Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein
Abstract
Through expression cloning we have isolated a cDNA-encoding SREBP cleavage-activating protein (SCAP), which regulates cholesterol metabolism by stimulating cleavage of transcription factors SREBP-1 and -2, thereby releasing them from membranes. The cDNA was isolated from Chinese hamster ovary cells with a dominant mutation that renders them resistant to sterol-mediated suppression of cholesterol synthesis and uptake. Sterol resistance was traced to a G-->A transition at codon 443 of SCAP, changing aspartic acid to asparagine. The D443N mutation enhances the cleavage-stimulating ability of SCAP and renders it resistant to inhibition by sterols. SCAP has multiple membrane-spanning regions, five of which resemble the sterol-sensing domain of HMG CoA reductase, an endoplasmic reticulum enzyme whose degradation is accelerated by sterols. SCAP appears to be a central regulator of cholesterol metabolism in animal cells.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
