Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct;122(10):3195-205.
doi: 10.1242/dev.122.10.3195.

De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells

Affiliations

De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells

H Lei et al. Development. 1996 Oct.

Abstract

It has been a controversial issue as to how many DNA cytosine methyltransferase mammalian cells have and whether de novo methylation and maintenance methylation activities are encoded by a single gene or two different genes. To address these questions, we have generated a null mutation of the only known mammalian DNA methyltransferase gene through homologous recombination in mouse embryonic stem cells and found that the development of the homozygous embryos is arrested prior to the 8-somite stage. Surprisingly, the null mutant embryonic stem cells are viable and contain low but stable levels of methyl cytosine and methyltransferase activity, suggesting the existence of a second DNA methyltransferase in mammalian cells. Further studies indicate that de novo methylation activity is not impaired by the mutation as integrated provirus DNA in MoMuLV-infected homozygous embryonic stem cells become methylated at a similar rate as in wild-type cells. Differentiation of mutant cells results in further reduction of methyl cytosine levels, consistent with the de novo methylation activity being down regulated in differentiated cells. These results provide the first evidence that an independently encoded DNA methyltransferase is present in mammalian cells which is capable of de novo methylating cellular and viral DNA in vivo.

PubMed Disclaimer

Publication types