Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct 25;271(43):26855-62.
doi: 10.1074/jbc.271.43.26855.

Disulfide bond engineering to monitor conformational opening of apolipophorin III during lipid binding

Affiliations
Free article

Disulfide bond engineering to monitor conformational opening of apolipophorin III during lipid binding

V Narayanaswami et al. J Biol Chem. .
Free article

Abstract

Apolipophorin III (apoLp-III) from the Sphinx moth, Manduca sexta, is an exchangeable, amphipathic apolipoprotein that alternately exists in water-soluble and lipid-bound forms. It is organized as a five-helix bundle in solution, which has been postulated to open at putative hinge domains to expose the hydrophobic interior, thereby facilitating interaction with the lipoprotein surface (Breiter, D. R. , Kanost, M. R., Benning, M. M., Wesenberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, H. M. (1991) Biochemistry 30, 603-608). To test this hypothesis, we engineered two cysteine residues in apoLp-III, which otherwise lacks cysteine, by site-directed mutagenesis at Asn-40 and Leu-90. Under oxidizing conditions the two cysteines spontaneously form a disulfide bond, which should tether the helix bundle and thereby prevent opening and concomitant lipid interaction. N40C/L90C apoLp-III was overexpressed in Escherichia coli and characterized for disulfide bond formation, secondary structure content, and stability, under both oxidizing and reducing conditions. Functional characterization was carried out by comparing the abilities of the oxidized and reduced protein to associate with modified lipoproteins in vitro. While the reduced form behaved like wild type apoLp-III, the oxidized form was unable to associate with lipoproteins. These results suggest that opening of the helix bundle is required for interaction with lipoproteins and provide a molecular basis for the dual existence of water-soluble and lipid-bound forms of apoLp-III. However, in phospholipid bilayer association assays, wild type, reduced, and oxidized N40C/L90C apoLp-III exhibited similar abilities to transform dimyristoylphosphatidylcholine multilamellar vesicles to disc-like complexes, as judged by electron microscopy. These data emphasize that underlying differences exist in initiating or maintaining a stable interaction of apoLp-III with phospholipid disc complexes versus spherical lipoprotein surfaces.

PubMed Disclaimer

Publication types

LinkOut - more resources