Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct 25;271(43):27031-8.
doi: 10.1074/jbc.271.43.27031.

Acylation of glucosaminyl phosphatidylinositol revisited. Palmitoyl-CoA dependent palmitoylation of the inositol residue of a synthetic dioctanoyl glucosaminyl phosphatidylinositol by hamster membranes permits efficient mannosylation of the glucosamine residue

Affiliations
Free article

Acylation of glucosaminyl phosphatidylinositol revisited. Palmitoyl-CoA dependent palmitoylation of the inositol residue of a synthetic dioctanoyl glucosaminyl phosphatidylinositol by hamster membranes permits efficient mannosylation of the glucosamine residue

W T Doerrler et al. J Biol Chem. .
Free article

Abstract

Two critical steps in the assembly of yeast and mammalian glycosylphosphatidylinositol (GPI) anchor precursors are palmitoylation of the inositol residue and mannosylation of the glucosamine residue of the glucosaminyl phosphatidylinositol (GlcNalpha-PI) intermediate. Palmitoylation has been reported to be acyl-CoA dependent in yeast membranes (Costello, L. C., and Orlean, P. (1992) J. Biol. Chem. 267, 8599-8603) but strictly acyl-CoA independent in rodent membranes (Stevens, V. L., and Zhang, H. (1994) J. Biol. Chem. 269, 31397-31403), and thus poorly conserved. In addition, it was suggested that acylation must precede mannosylation in both yeast (Costello, L. C., and Orlean, P. (1992) J. Biol. Chem. 276, 8599-8603) and rodent (Urakaze, M., Kamitani, T., DeGasperi, R., Sugiyama, E., Chang, H.-M., Warren, C. D., and Yeh, E. T. H. (1992) J. Biol. Chem. 267, 6459-6462) cells because GlcNalpha-acyl-PI accumulates in vivo when mannosylation is blocked. However, GlcNalpha-acyl-PI accumulation would also be expected if mannosylation and acylation were independent of each other. These issues were addressed by the use of a synthetic dioctanoyl GlcNalpha-PI analogue (GlcNalpha-PI(C8)) as an in vitro substrate for GPI-synthesizing enzymes in Chinese hamster ovary cell membranes. GlcNalpha-PI(C8) was acylated in an manner requiring acyl-CoA. Thus, the process involving acyl-CoA reported for yeast has been conserved in mammals. Furthermore, both GlcNalpha-PI(C8) and GlcNalpha-acyl-PI(C8) could be mannosylated in vitro, but mannosylation of the latter was significantly more efficient. This provides direct support for the earlier suggestion that acylation precedes mannosylation in rodents cells. A similar result was also observed with the Saccharomyces cerevisiae mannosyltransferase. In contrast, it has been reported that mannosylation of endogenous GlcNalpha-PI by Trypansoma brucei membranes occurs without prior acylation. The same result was obtained with GlcNalpha-PI(C8), confirming that the mannosyltransferase of trypanosomes is divergent from those in yeasts and rodents.

PubMed Disclaimer

Publication types

LinkOut - more resources