Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase
- PMID: 8900211
- DOI: 10.1074/jbc.271.43.27176
Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase
Abstract
The entry of RNA polymerase II into a productive mode of elongation is controlled, in part, by the postinitiation activity of positive transcription elongation factor b (P-TEFb) (Marshall, N. F., and Price, D. H. (1995) J. Biol. Chem. 270, 12335-12338). We report here that removal of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II abolishes productive elongation. Correspondingly, we found that P-TEFb can phosphorylate the CTD of pure RNA polymerase II. Furthermore, P-TEFb can phosphorylate the CTD of RNA polymerase II when the polymerase is in an early elongation complex. Both the function and kinase activity of P-TEFb are blocked by the drugs 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and H-8. P-TEFb is distinct from transcription factor IIH (TFIIH) because the two factors have no subunits in common, P-TEFb is more sensitive to DRB than is TFIIH, and most importantly, TFIIH cannot substitute functionally for P-TEFb. We propose that phosphorylation of the CTD by P-TEFb controls the transition from abortive into productive elongation mode.
Similar articles
-
Identification of a cyclin subunit required for the function of Drosophila P-TEFb.J Biol Chem. 1998 May 29;273(22):13855-60. doi: 10.1074/jbc.273.22.13855. J Biol Chem. 1998. PMID: 9593731
-
Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro.EMBO J. 1998 Dec 15;17(24):7395-403. doi: 10.1093/emboj/17.24.7395. EMBO J. 1998. PMID: 9857195 Free PMC article.
-
Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.Genes Dev. 2006 Mar 1;20(5):601-12. doi: 10.1101/gad.1398206. Genes Dev. 2006. PMID: 16510875 Free PMC article.
-
Tat, Tat-associated kinase, and transcription.J Biomed Sci. 1998;5(1):24-7. doi: 10.1007/BF02253352. J Biomed Sci. 1998. PMID: 9570510 Review.
-
Control of RNA polymerase II activity by dedicated CTD kinases and phosphatases.Front Biosci. 2001 Oct 1;6:D1358-68. doi: 10.2741/majello. Front Biosci. 2001. PMID: 11578967 Review.
Cited by
-
Structural Motifs for CTD Kinase Specificity on RNA Polymerase II during Eukaryotic Transcription.ACS Chem Biol. 2020 Aug 21;15(8):2259-2272. doi: 10.1021/acschembio.0c00474. Epub 2020 Jul 14. ACS Chem Biol. 2020. PMID: 32568517 Free PMC article.
-
Molecular dynamics simulation and experimental verification of the interaction between cyclin T1 and HIV-1 Tat proteins.PLoS One. 2015 Mar 17;10(3):e0119451. doi: 10.1371/journal.pone.0119451. eCollection 2015. PLoS One. 2015. PMID: 25781978 Free PMC article.
-
Ready, pause, go: regulation of RNA polymerase II pausing and release by cellular signaling pathways.Trends Biochem Sci. 2015 Sep;40(9):516-25. doi: 10.1016/j.tibs.2015.07.003. Epub 2015 Aug 4. Trends Biochem Sci. 2015. PMID: 26254229 Free PMC article. Review.
-
The RNA polymerase II CTD coordinates transcription and RNA processing.Genes Dev. 2012 Oct 1;26(19):2119-37. doi: 10.1101/gad.200303.112. Genes Dev. 2012. PMID: 23028141 Free PMC article. Review.
-
A model of repression: CTD analogs and PIE-1 inhibit transcriptional elongation by P-TEFb.Genes Dev. 2003 Mar 15;17(6):748-58. doi: 10.1101/gad.1068203. Genes Dev. 2003. PMID: 12651893 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous