Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov;25(5):385-91.
doi: 10.3109/10715769609149060.

In situ microdialysis for monitoring of extracellular glutathione levels in normal, ischemic and post-ischemic skeletal muscle

Affiliations

In situ microdialysis for monitoring of extracellular glutathione levels in normal, ischemic and post-ischemic skeletal muscle

A Sirsjö et al. Free Radic Res. 1996 Nov.

Abstract

Microdialysis probes were inserted into the tibialis anterior muscle and into the femoral vein of anaesthetised Sprague-Dawley rats for monitoring of reduced (GSH) and oxidized (GSSG) extracellular glutathione. The dialysates were analysed using HPLC. The levels of GSH and GSSG were high immediately after implantation in the skeletal muscle and declined to steady state levels after 90 minutes into the same range as that found in the venous dialysate. Total ischemia was induced two hours after implantation of the dialysis probe after steady state levels had been reached. The extracellular levels of GSH increased during total ischemia and had doubled at the end of the ischemic period compared to preischemic values. During the following initial 30 minutes of reperfusion the levels increased further to four-fold the preischemic levels. The levels of GSSG also increased (100%) during the initial 30 minutes of reperfusion. The extracellular GSH levels remained elevated for 1 hour of reperfusion, but the GSSG levels returned to preischemic levels. The results indicate that intermittent hypoxia or anoxia in muscle tissue through hypoperfusion or ischemia decreases intracellular GSH stores by leakage, reducing the intracellular antioxidative capacity and increasing the risk for oxidative reperfusion injury upon final normalization of tissue blood supply.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources