Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1996 Oct;81(4):1739-43.
doi: 10.1152/jappl.1996.81.4.1739.

Changes in airway resistance induced by nasal inhalation of cold dry, dry, or moist air in normal individuals

Affiliations
Free article
Clinical Trial

Changes in airway resistance induced by nasal inhalation of cold dry, dry, or moist air in normal individuals

P Fontanari et al. J Appl Physiol (1985). 1996 Oct.
Free article

Abstract

Nasopulmonary bronchomotor reflexes elicited by mechanical or irritant stimulation of the nose have been described in animals and asthmatic patients. However, few studies were devoted to the consequences of nasal breathing of cold and dry air or of only dry or only moist air on the bronchomotor control in normal individuals. The present study reported changes in interruption resistance (Rint) measured during eupneic breathing of moderately cold (-4 or -10 degrees C) and dry [0.3% relative humidity (RH)] air or of room air at 23 degrees C that is either dry (0.3% RH) or moist (97% RH). Nasal inhalation of cold (-4 degrees C) dry air or of only dry air significantly increased baseline Rint value (17 and 21%, respectively) throughout the 15-min test periods. The response to cold was significantly accentuated when the air temperature was lowered to -10 degrees C (42%). After nasal anesthesia or inhalation of a cholinergic antagonist, cold air did not induce a change in Rint. Nasal inhalation of moist room air had no effect. No Rint changes were measured during oral breathing of the three test agents. It is concluded that the activation of cold receptors or osmoreceptors in the nasal mucosa induces protective bronchoconstrictor responses in normal individuals.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources