Immunolocalization of fibronectin during reparative dentinogenesis in human teeth after pulp capping with calcium hydroxide
- PMID: 8906128
- DOI: 10.1177/00220345960750081101
Immunolocalization of fibronectin during reparative dentinogenesis in human teeth after pulp capping with calcium hydroxide
Abstract
Exposed dental pulp is known to possess the ability to form a hard-tissue barrier (dentin bridge). The exact mechanisms by which pulp cells differentiate into odontoblasts in this process are unknown. Fibronectin has been demonstrated to play a crucial role in odontoblast differentiation during tooth development. This study tested the hypothesis that fibronectin is involved in the initial stages of replacement odontoblast differentiation and reparative dentin formation. We observed its immunohistochemical localization during dentin bridge formation in human teeth, after pulp was capped with calcium hydroxide [Ca(OH)2]. One day after the capping, precipitation of crystalline structures was observed at the TEM level in association with cell debris at the interface between the superficial necrotic zone and underlying pulp tissue. This layer of dystrophic calcification showed positive reaction for fibronectin, and pulp cells appeared to be closely associated with this layer, seven to ten days post-operatively. At 14 days, an alignment of cells, some of which were elongated and odontoblast-like, was observed adjacent to the fibronectin-positive irregular matrix. Between the cells, corkscrew fiber-like fluorescence was visible. At 28 days, the irregular fibrous matrix was followed by the formation of tubular dentin-like matrix lined with odontoblast-like cells. Therefore, it would seem that fibronectin associated with the initially formed calcified layer might play a mediating role in the differentiation of pulp cells into odontoblasts during reparative dentinogenesis, after pulp was capped with Ca(OH)2.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
