Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 Oct 31:796:218-25.
doi: 10.1111/j.1749-6632.1996.tb32584.x.

Differential regulation of eosinophil adhesion under conditions of flow in vivo

Affiliations
Review

Differential regulation of eosinophil adhesion under conditions of flow in vivo

P Sriramarao et al. Ann N Y Acad Sci. .

Abstract

The proinflammatory role of eosinophils in patients with allergic inflammation is now well recognized. However, the molecular mechanisms mediating the sequential events of eosinophil recruitment from the blood stream to sites of allergic inflammation under conditions of shear force have not been clearly established. Using the xenogeneic rabbit model system to study human eosinophil adhesion under conditions of flow in vivo, we have demonstrated that eosinophils like neutrophils roll, adhere, and extravasate across cytokine-stimulated endothelial cells at physiological shear rates in vivo. Eosinophils rolling on venular endothelial cells is mediated by L-selectin and VLA-4. Mediators of cellular activation such as GM-CSF, PAF, or PMA had a differential effect on neutrophil and eosinophil receptor expression and their rolling function. It would thus appear that acting sequentially or in concert a variety of cytokines, including GM-CSF, RANTES, IL-5, and specific cell adhesion molecules (VLA-4/VCAM-1) might play a critical role in the selective sequestration of eosinophils and other proinflammatory leukocytes into the inflamed tissues during episodes of allergic inflammation. Further understanding of the function of these mediators as well as other traffic signals that regulate eosinophil adhesion will help in developing better therapeutic strategies to block the emigration of eosinophils from the blood stream, and also to inhibit the activation of eosinophils once they have reached sites of tissue inflammation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources