Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct;6(5):363-71.
doi: 10.1097/00008390-199610000-00003.

Selective growth of human melanoma cells in the brain parenchyma of nude mice

Affiliations

Selective growth of human melanoma cells in the brain parenchyma of nude mice

T Fujimaki et al. Melanoma Res. 1996 Oct.

Abstract

The purpose of this study was to determine whether the growth of human melanoma cells in the brain parenchyma is selective and represents the growth of unique cells. Six human melanoma cell lines derived from cutaneous lymph node or brain metastases (from six different patients) and melanoma cells isolated from fresh surgical specimens of two primary cutaneous melanomas, two lymph node metastases and two brain metastases (each from a different patient) were injected into the subarachnoid space of nude mice. All melanomas produced growths in the leptomeninges, but only melanoma cells isolated from brain metastases infiltrated into and grew in the brain parenchyma of nude mice. The results from in vitro assays for cell motility or production of gelatinase activity did not correlate with in vivo growth pattern. However, the in vitro growth of human melanoma cells in the presence of TGF-beta 2 inversely correlated with potential for brain parenchyma metastasis, i.e. the growth of cells from brain metastases was least inhibited by TGF-beta 2. These data suggest that melanoma brain parenchyma metastases are produced by unique cells that may be resistant to the antiproliferative effects of TGF-beta 2.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources