Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov;135(3):623-33.
doi: 10.1083/jcb.135.3.623.

A pathway for targeting soluble misfolded proteins to the yeast vacuole

Affiliations

A pathway for targeting soluble misfolded proteins to the yeast vacuole

E Hong et al. J Cell Biol. 1996 Nov.

Abstract

We have evaluated the fate of misfolded protein domains in the Saccharomyces cerevisiae secretory pathway by fusing mutant forms of the NH2-terminal domain of lambda repressor protein to the secreted protein invertase. The hybrid protein carrying the wild-type repressor domain is mostly secreted to the cell surface, whereas hybrid proteins with amino acid substitutions that cause the repressor domain to be thermodynamically unstable are retained intracellularly. Surprisingly, the retained hybrids are found in the vacuole, where the repressor moiety is degraded by vacuolar proteases. The following observations indicate that receptor-mediated recognition of the mutant repressor domain in the Golgi lumen targets these hybrid fusions to the vacuole. (a) The invertase-repressor fusions, like wild-type invertase, behave as soluble proteins in the ER lumen. (b) Targeting to the vacuole is saturable since overexpression of the hybrids carrying mutant repressor increases the fraction of fusion protein that appears at the cell surface. (c) Finally, deletion of the VPS10 gene, which encodes the transmembrane Golgi receptor responsible for targeting carboxypeptidase Y to the vacuole, causes the mutant hybrids to be diverted to the cell surface. Together these findings suggest that yeast have a salvage pathway for degradation of nonnative luminal proteins by receptor-mediated transport to the vacuole.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1993 Dec 25;268(36):27269-76 - PubMed
    1. Proc Natl Acad Sci U S A. 1979 Feb;76(2):791-5 - PubMed
    1. J Biol Chem. 1994 Apr 1;269(13):9833-41 - PubMed
    1. Nature. 1994 May 26;369(6478):283-4 - PubMed
    1. Cell. 1994 May 20;77(4):579-86 - PubMed

Publication types

MeSH terms