Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov 15;271(46):29223-30.
doi: 10.1074/jbc.271.46.29223.

Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury

Affiliations
Free article

Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury

P Wang et al. J Biol Chem. .
Free article

Abstract

Altered nitric oxide (NO.) production is a critical factor in tissue reperfusion injury; however, controversy remains regarding these alterations and how they cause injury. Since superoxide (O-2) generation is triggered during the early period of reperfusion the cytotoxic oxidant peroxynitrite (ONOO-) could be formed, but it is not known if this occurs. Therefore electron paramagnetic resonance and chemiluminescence studies were performed of the magnitude and time course of NO., O-2, and ONOO- formation in the postischemic heart. Isolated rat hearts were subjected either to normal perfusion or to reperfusion after 30 min of ischemia in the presence of the NO. trap Fe2+-N-methyl-D-glucamine dithiocarbamate with electron paramagnetic resonance measurements performed on the effluent. Although only trace signals were present prior to ischemia, prominent NO. adduct signals were seen during the first 2 min of reflow which were abolished by nitric oxide synthase (NOS) inhibition. Similar studies with the O-2 trap 5, 5-dimethyl-1-pyrroline N-oxide demonstrated a burst of O-2 generation over the first 2 min of reflow. Chemiluminescence measurements using 5-amino-2,3-dihydro-1,4-phthalazinedione (luminol) demonstrated a similar marked increase in ONOO- which was blocked by NOS inhibitors or superoxide dismutase. NOS inhibition or superoxide dismutase greatly enhanced the recovery of contractile function in postischemic hearts. Immunohistology demonstrated that the ONOO--mediated nitration product nitrotyrosine was formed in postischemic hearts but not in normally perfused controls. Thus, NO. formation is increased during the early period of reflow and reacts with O-2 to form ONOO-, which results in amino acid nitration and cellular injury.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources