Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 Sep;23(9):759-65.
doi: 10.1111/j.1440-1681.1996.tb01177.x.

Regulation and role of urokinase plasminogen activator in vascular remodelling

Affiliations
Review

Regulation and role of urokinase plasminogen activator in vascular remodelling

V Tkachuk et al. Clin Exp Pharmacol Physiol. 1996 Sep.

Abstract

1. Urokinase plasminogen activator (uPA) is produced and secreted by multiple vascular cell types, thus influencing the processes and the extent to which the vasculature is remodelled during the development of the intima or a neointima and during hypertrophy and angiogenesis. 2. Urokinase plasminogen activator mRNA expression is up- and down-regulated by growth factors, cytokines and steroids. Urokinase plasminogen activator is secreted as a single chain inactive form that may be proteolytically converted to active or inactive forms. Targeting of proteolytic activity may occur via focalized expression of uPA and its cell surface receptors (uPAR). Proteolytic activity is also controlled through the often co-ordinated expression of specific inhibitors. 3. A proteolytic cascade involving uPA provides its major role in tissue remodelling through the primary degradation of extracellular matrix and secondarily through the activation of transforming growth factor-beta or release from the matrix of basic fibroblast growth factor. In addition, uPA secreted by growth factor-stimulated vascular cells may contribute to the chemotactic and mitogenic responses ascribed to the growth factor and recent evidence strongly suggests that uPA has direct biological actions on vascular cells. 4. The cell surface binding of uPA via its growth factor-like domain to uPAR localizes and activates the protease, but may also initiate transmembrane signalling of biological responses, including migration/invasion and proliferation. As the uPAR lacks intracellular signalling domains, the signals may be transduced via interactions between uPA/uPAR and more classical signalling receptors. The mechanism by which uPA may be involved in cell signalling is yet to be elucidated.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources