Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct;36(19):3077-85.
doi: 10.1016/0042-6989(96)00061-2.

Individual differences in contrast sensitivity functions: the lowest spatial frequency channels

Affiliations
Free article

Individual differences in contrast sensitivity functions: the lowest spatial frequency channels

D H Peterzell et al. Vision Res. 1996 Oct.
Free article

Abstract

The number and nature of spatial channels tuned to low spatial frequencies in photopic vision was examined by measuring individual differences in the contrast sensitivity functions (CSFs) of seven visually normal adults. Stationary, 51 cd/m2, low spatial frequency sinusoidal gratings between 0.27 and 2.16 c/deg were used as stimuli. Correlational and factor analyses revealed that the set of CSFs contained only one statistical source of individual variability at spatial frequencies below 1 c/deg (tuned to a peak of about 0.8 c/deg), and a second source above 1 c/deg (tuned to about 1.4 c/deg). The sources ("factor-channels") mapped well onto the two coarsest spatial frequency channels from some existing computational models. The analysis was applied also to earlier data from 4-, 6- and 8-month-old infants, in which two sources of variability have been found below 1 c/deg [Peterzell, D. H., Werner, J. S. & Kaplan, P. S. (1995). Vision Research, 35, 961-980]. The combined results are consistent with the hypothesis that in photopic vision of the neonate, there are two channels with peak sensitivities below 1 c/deg, and that these channels shift their tuning from lower to higher spatial frequencies by about a factor of four during development.

PubMed Disclaimer

Publication types

LinkOut - more resources