An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age
- PMID: 8917821
- DOI: 10.1016/0042-6989(95)00327-4
An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age
Abstract
A quantitative description of the activation reactions in the cGMP phototransduction cascade has been recently developed [Lamb & Pugh (1992). Journal of Physiology, 449, 719-758]. When applied to the human electroretinogram a-wave, the widely used simplified form of this model provides a good description of all waveforms except those elicited with very high energy stimuli. The basis for these misfits at high energies is explored in the current study and an alternative model of phototransduction is derived that retains the quantitative aspects but avoids certain simplifying assumptions previously made. The new model describes well both rod- and cone-isolated a-waves over a large range of stimulus energies extending up to those that cause significant bleaching. To facilitate clinical application of this methodology, a short test protocol is developed and normal data for rod and cone transduction parameters are provided over a wide age range. In the sample of normal subjects studied, maximum amplitude of rod and cone a-waves and sensitivity of the cone a-wave do not change with age. An age-related decline in rod a-wave sensitivity is present and it is greater than that expected from pre-retinal absorption alone.
Similar articles
-
Rod and cone contributions to the a-wave of the electroretinogram of the macaque.J Physiol. 2003 Mar 1;547(Pt 2):509-30. doi: 10.1113/jphysiol.2002.030304. Epub 2003 Jan 24. J Physiol. 2003. PMID: 12562933 Free PMC article.
-
Development of the cone ERG in infants.Invest Ophthalmol Vis Sci. 2005 Sep;46(9):3458-62. doi: 10.1167/iovs.05-0382. Invest Ophthalmol Vis Sci. 2005. PMID: 16123452 Free PMC article.
-
Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave.Invest Ophthalmol Vis Sci. 1994 Jun;35(7):2948-61. Invest Ophthalmol Vis Sci. 1994. PMID: 8206712
-
Rodent electroretinography: methods for extraction and interpretation of rod and cone responses.Prog Retin Eye Res. 2008 Jan;27(1):1-44. doi: 10.1016/j.preteyeres.2007.09.003. Epub 2007 Oct 7. Prog Retin Eye Res. 2008. PMID: 18042420 Review.
-
Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.Adv Exp Med Biol. 2002;514:179-203. doi: 10.1007/978-1-4615-0121-3_11. Adv Exp Med Biol. 2002. PMID: 12596922 Review.
Cited by
-
Comparison of conventional ERG parameters and high-intensity A-wave analysis in a clinical setting.Doc Ophthalmol. 2003 May;106(3):281-7. doi: 10.1023/a:1022943710356. Doc Ophthalmol. 2003. PMID: 12737506
-
In vivo function of the orphan nuclear receptor NR2E3 in establishing photoreceptor identity during mammalian retinal development.Hum Mol Genet. 2006 Sep 1;15(17):2588-602. doi: 10.1093/hmg/ddl185. Epub 2006 Jul 25. Hum Mol Genet. 2006. PMID: 16868010 Free PMC article.
-
Conscious wireless electroretinogram and visual evoked potentials in rats.PLoS One. 2013 Sep 12;8(9):e74172. doi: 10.1371/journal.pone.0074172. eCollection 2013. PLoS One. 2013. PMID: 24069276 Free PMC article.
-
Cone-based vision in the aging mouse.Vision Res. 2007 Jul;47(15):2037-46. doi: 10.1016/j.visres.2007.03.023. Epub 2007 May 16. Vision Res. 2007. PMID: 17509638 Free PMC article.
-
Altered environmental light drives retinal change in the Atlantic Tarpon (Megalops atlanticus) over timescales relevant to marine environmental disturbance.BMC Ecol. 2018 Jan 18;18(1):1. doi: 10.1186/s12898-018-0157-0. BMC Ecol. 2018. PMID: 29347979 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical