Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov;5(11):1695-701.
doi: 10.1093/hmg/5.11.1695.

The Drosophila developmental gene fat facets has a human homologue in Xp11.4 which escapes X-inactivation and has related sequences on Yq11.2

Affiliations

The Drosophila developmental gene fat facets has a human homologue in Xp11.4 which escapes X-inactivation and has related sequences on Yq11.2

M H Jones et al. Hum Mol Genet. 1996 Nov.

Erratum in

  • Hum Mol Genet 1997 Feb;6(2):334-5

Abstract

EST 221 derived from human adult testis detects homology to the Drosophila fat facets gene (fat) and has related sequences on both the X and Y chromosomes mapping to Xp11.4 and Yq11.2 respectively. These two loci have been termed DFFRX and DFFRY for Drosophila fat facets related X and Y. The major transcript detected by EST 221 is-8 kb in size and is expressed widely in a range of 16 human adult tissues. RT-PCR analysis of 13 different human embryonic tissues with primers specific for the X and Y sequences demonstrates that both loci are expressed in developing tissues and quantitative RT-PCR of lymphoblastoid cell lines carrying different numbers of X chromosomes reveals that the X-linked gene escapes X-inactivation. The amino acid sequence (2547 residues) of the complete open reading frame of the X gene has 44% identity and 88% similarity to the Drosophila sequence and contains the conserved Cys and His domains characteristic of deubiquitinating enzymes, suggesting its biochemical function may be the hydrolysis of ubiquitin from protein-ubiquitin conjugates. The requirement of faf for normal oocyte development in Drosophila combined with the map location and escape from X-inactivation of DFFRX raises the possibility that the human homologue plays a role in the defects of oocyte proliferation and subsequent gonadal degeneration found in Turner syndrome.

PubMed Disclaimer

Publication types

MeSH terms