Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov;10(11):1444-56.
doi: 10.1210/mend.10.11.8923469.

Distinct conformations of vitamin D receptor/retinoid X receptor-alpha heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements of the osteocalcin and osteopontin genes

Affiliations

Distinct conformations of vitamin D receptor/retinoid X receptor-alpha heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements of the osteocalcin and osteopontin genes

A Staal et al. Mol Endocrinol. 1996 Nov.

Abstract

The 1 alpha,25-dihydroxyvitamin D3 (VD3)-dependent stimulation of osteocalcin (OC) and osteopontin (OP) gene transcription in bone tissue is mediated by interactions of trans-activating factors with distinct VD3-responsive elements (VDREs). Sequence variation between the OC- and OP-VDRE steroid hormone half-elements provides the potential for recognition by distinct hormone receptor homo- and heterodimers. However, the exact composition of endogenous VD3- induced complexes recognizing the OC- and OP-VDREs in osteoblasts has not been definitively established. To determine the identity of these complexes, we performed gel shift immunoassays with nuclear proteins from ROS 17/ 2.8 osteoblastic cells using a panel of monoclonal antibodies. We show that VD3- inducible complexes interacting with the OC- and OP-VDREs represent two distinct heterodimeric complexes, each composed of the vitamin D receptor (VDR) and the retinoid X receptor-alpha (RXR). The OC- and OP-VDR/RXR alpha heterodimers are immunoreactive with RXR antibodies and several antibodies directed against the ligand-binding domain of the VDR. However, while the OC-VDRE complex is also efficiently recognized by specific monoclonal antibodies contacting epitopes in or near the VDR DNA-binding domain (DBD) (between amino acids 57-164), the OP-VDRE complex is not efficiently recognized by these antibodies. By systematically introducing a series of point-mutations in the OC-VDRE, we find that two internal nucleotides of the proximal OC-VDRE half-site (nucleotide -449 and -448; 5'-AGGACA) determine differences in VDR immunoreactivity. These results are consistent with the well established polarity of RXR heterodimer binding to bipartite hormone response elements, with the VDR recognizing the 3'-half-element. Furthermore, our data suggest that the DBD of the VDR adopts different protein conformations when contacting distinct VDREs. Distinctions between the OC- and OP-VDR/RXR alpha complexes may reflect specialized requirements for VD3 regulation of OC and OP gene expression in response to physiological cues mediating osteoblast differentiation.

PubMed Disclaimer

Publication types

MeSH terms