Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov;81(11):3923-9.
doi: 10.1210/jcem.81.11.8923839.

Accumulation of a non-(1-84) molecular form of parathyroid hormone (PTH) detected by intact PTH assay in renal failure: importance in the interpretation of PTH values

Affiliations

Accumulation of a non-(1-84) molecular form of parathyroid hormone (PTH) detected by intact PTH assay in renal failure: importance in the interpretation of PTH values

J H Brossard et al. J Clin Endocrinol Metab. 1996 Nov.

Abstract

A molecular form of PTH different from PTH-(1-84) and present in normal serum is recognized by two-site intact (I-) PTH assays; it responds to Ca2+ changes in the same way that PTH carboxyl-terminal fragments do. To evaluate the impact of this finding, we have compared basal, stimulated, and nonsuppressible I-PTH values in 14 normal subjects and 15 renal failure patients, subdivided into 8 patients with low (< 12 pmol/L; LBI) and 7 with high (> 12 pmol/L; HBI) basal I-PTH. Samples obtained under various calcemic conditions in these 3 groups were further fractionated by high performance liquid chromatography (HPLC) and assayed for I-PTH, and the various peaks observed were quantitated by planimetry. Differences among the 3 groups were reinterpreted knowing the exact composition of I-PTH. Basal I-PTH was greatly increased in HBI (mean +/- SD, 44.1 +/- 38.6 pmol/L) compared to that in normal subjects (2.5 +/- 0.8 pmol/L; P < 0.001) or LBI (6.1 +/- 2.4 pmol/L; P < 0.001); the difference was less in these last 2 groups (P < 0.01). Similar differences were observed for stimulated and nonsuppressible I-PTH, except for stimulated I-PTH, which was similar in normal and LBI subjects. Two I-PTH HPLC molecular forms accounted for I-PTH immunoreactivity in the 3 groups. In normal subjects, PTH-(1-84) accounted for 74.9 +/- 4.3%, 79.0 +/- 3.0%, and 87.2 +/- 1.0% of I-PTH in hyper-, normo-, and hypocalcemia, respectively, but only for 44.6 +/- 2.5%, 50.5 +/- 0.7%, and 63.6 +/- 0.1% in renal failure patients, with similar results in HBI and LBI. The accumulation of a non-(1-84) PTH peak accounted for the difference between normal subjects and renal failure patients. When basal, stimulated, and nonsuppressible I-PTH values were separated into their 2 components, prior differences between HBI and LBI or normal subjects remained unchanged because of very high I-PTH values in HBI, but differences between normal and LBI subjects were entirely explained by the accumulation of the non-(1-84) PTH peak [basal, 3.0 +/- 1.2 vs. 0.5 +/- 0.2 pmol/L (P < 0.001); stimulated, 6.8 +/- 2.3 vs. 2.3 +/- 1.0 pmol/L (P < 0.001); nonsuppressible, 1.3 +/- 0.7 vs. 0.2 +/- 0.08 pmol/L (P < 0.001)]; PTH-(1-84) values were similar (basal, 3.1 +/- 1.2 vs. 2.0 +/- 0.6 pmol/L; stimulated, 12.0 +/- 3.9 vs. 15.5 +/- 6.6 pmol/L; nonsuppressible, 1.1 +/- 0.6 vs. 0.52 +/- 0.22 pmol/L). Thus, a non-(1-84) PTH molecular form detected by two-site I-PTH assays accumulates in renal failure and accounts for a larger proportion of I-PTH than that in normal subjects. Levels of I-PTH 1.57 times higher than those in normocalcemic subjects are thus required in renal failure to achieve similar PTH-(1-84) concentrations. The composition of I-PTH is also identical in all hemodialyzed patients.

PubMed Disclaimer

LinkOut - more resources