Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996;72(5-6):401-9.
doi: 10.1007/BF00242268.

Reduced stretch-reflex sensitivity after exhausting stretch-shortening cycle exercise

Affiliations

Reduced stretch-reflex sensitivity after exhausting stretch-shortening cycle exercise

C Nicol et al. Eur J Appl Physiol Occup Physiol. 1996.

Abstract

The stretch-shortening cycle (SSC) is an effective and natural form of muscle function but, when repeated with sufficient intensity or duration, it may lead to muscle damage and functional defects. A reduced tolerance to impact has been reported, which may be partly attributed to a reduced stretch-reflex potentiation. The aim of the present study was to examine the influence of SSC-induced metabolic fatigue and muscle damage on the efficacy of stretch reflexes, as judged by the electromyograph (EMG) response of two shank muscles (lateral gastrocnemius LG, soleus SOL) to controlled ramp stretches. These EMG responses were recorded before and immediately after exhausting SSC-type leg exercise and 2 h, 2 days and 4 days later. Serum concentrations of creatine kinase ([CK]), myoglobin and lactate were measured repetitively along the protocol. Two maximal vertical drop jumps and counter-movement jumps were performed after each reflex test. The exhausting SSC-type exercise induced an immediate reduction (P < 0.05) with a delayed short-term recovery of the LG peak-to-peak reflex amplitude. This was not accompanied by significant changes in the reflex latency. The drop jump performance remained slightly but significantly reduced (P < 0.05) until the 2nd day postexercise. Peak [CK] appeared for all the subjects on the 2nd day, suggesting the presence of muscle damage. The increase in [CK] between the 2nd h and the 2nd day postexercise was found to be negatively related (P < 0.001) to the relative changes in the drop jump height. Furthermore, a significant relationship (P < 0.05) was found between recovery of the stretch reflex in LG and the decrease of [CK] between the 2nd and the 4th day. These findings support the hypothesis of a reduced stretch-reflex sensitivity. While the exact mechanisms of the reflex inhibition remain unclear, it is emphasized that the delayed recovery of the reflex sensitivity could have resulted from the progressive inflammation that develops in cases of muscle damage.

PubMed Disclaimer

References

    1. J Physiol. 1993 Nov;471:787-99 - PubMed
    1. Can J Sport Sci. 1991 Jun;16(2):142-50 - PubMed
    1. Med Sci Sports Exerc. 1988 Apr;20(2):172-7 - PubMed
    1. J Neurophysiol. 1992 Aug;68(2):449-70 - PubMed
    1. J Neurol Sci. 1983 May;59(2):185-203 - PubMed