Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Apr;270(4 Pt 1):G634-45.
doi: 10.1152/ajpgi.1996.270.4.G634.

Infection of T84 cells with enteropathogenic Escherichia coli alters barrier and transport functions

Affiliations

Infection of T84 cells with enteropathogenic Escherichia coli alters barrier and transport functions

D J Philpott et al. Am J Physiol. 1996 Apr.

Abstract

The effect of enteropathogenic Escherichia coli (EPEC) infection on electrophysiology of T84 cell monolayers was examined. After 18 h of infection with EPEC (E2348), transepithelial electrical resistance was decreased (30 +/- 5% of uninfected values) compared with monolayers infected with a nonpathogenic E. coli strain (104 +/- 13%). Resistance of monolayers infected with EPEC mutant strain CVD206, deficient in attaching and effacing lesion formation, was partially reduced (66 +/- 10%). In addition, permeability of EPEC-infected T84 monolayers increased compared with uninfected cells. Associated with these changes was an altered distribution of the tight junction protein, ZO-1. Taken together, these findings suggest that the barrier defect induced by EPEC was at the level of the tight junction. Adenosine 3'5'-cyclic monophosphate-stimulated chloride secretion was also diminished in EPEC-infected cells, whereas Ca2+ -dependent chloride secretion was not different from uninfected cells. These findings indicate that EPEC infection alters intestinal epithelial barrier and transport functions. Furthermore, these results provide a possible mechanism for EPEC-induced diarrheal disease.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources