Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 May;21(3):187-97.

Steroids conjugated to bovine serum albumin as tools to demonstrate specific steroid neuronal membrane binding sites

Affiliations

Steroids conjugated to bovine serum albumin as tools to demonstrate specific steroid neuronal membrane binding sites

J Zheng et al. J Psychiatry Neurosci. 1996 May.

Abstract

Our laboratory has pioneered the use of bovine serum albumin (BSA) linked to different positions of the ring structure of progesterone to investigate steroid-membrane interactions. The complex can be radioiodinated to demonstrate the existence of specific membrane progesterone binding sites in the rat brain. Not only are these progesterone complexes specific ligands, but they also elicit functional responses in the central nervous system (CNS), particularly in the corpus striatum (CS) where progesterone-BSA conjugates linked at C-3 and C-11 positions (P-3-BSA and P-11-BSA) alter amphetamine-evoked dopamine release. In this communication we will report our current studies that use radioiodinated progesterone-BSA conjugates (P-3-125I-BSA, P-6-125I-BSA, and P-11-125I-BSA) and estradiol-BSA conjugates linked at C-6 position (17 beta-E-6-125I-BSA and 17-E-6-BSA) to demonstrate the existence of specific membrane binding sites for progesterone and estrogen in several regions of the rat brain. In addition, initial studies to isolate and purify these membrane binding sites from digitonin-solubilized P2-membrane fractions by affinity chromatography are reported. The data indicate that these sites are part of a complex membrane receptor for either estrogen or progesterone, the so-called membrane estrogen receptor (mER) and the membrane progesterone receptor (mPR), respectively.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Anal Biochem. 1976 May 7;72:248-54 - PubMed
    1. Endocrinology. 1959 Oct;65:652-68 - PubMed
    1. J Biol Chem. 1977 Dec 10;252(23):8692-9 - PubMed
    1. Proc Natl Acad Sci U S A. 1978 May;75(5):2353-7 - PubMed
    1. Ann N Y Acad Sci. 1977 Mar 11;286:331-54 - PubMed

Publication types