Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Dec;75(4):1255-69.
doi: 10.1016/0306-4522(96)00241-2.

Glutamate as a putative neurotransmitter in the mollusc, Lymnaea stagnalis

Affiliations

Glutamate as a putative neurotransmitter in the mollusc, Lymnaea stagnalis

O B Nesic et al. Neuroscience. 1996 Dec.

Abstract

Bath-applied glutamate (10-1000 microM) produced excitatory and inhibitory responses on numerous identified neurons of the mollusc Lymnaea stagnalis. Using both in situ and in vitro preparations, glutamate or glutamate agonists produced a depolarization in identified neurons right pedal dorsal 1 and right pedal dorsal 2 and 3. However, attempts to block glutamate-evoked responses with glutamate antagonists were unsuccessful. We examined a potential glutamatergic neuron, visceral dorsal 4. Exogenous application of the peptides (GDPFLRFamide and SDPFLRFamide) could mimic the inhibitory, but not the excitatory effects of visceral dorsal 4 on its postsynaptic cells, implying the presence of a second transmitter. We tested the possibility that glutamate is this second neurotransmitter by using excitatory synapses between visceral dorsal 4 and postsynaptic cells right pedal dorsal 2 and 3, right pedal dorsal 1, visceral F group and right parietal B group neurons. Of all the putative neurotransmitters tested, only glutamate had consistent excitatory effects on these postsynaptic cells. Also, the amplitude of the right pedal dorsal 2 and 3 excitatory postsynaptic potentials was reduced in the presence of N-methyl-D-aspartate and other glutamate agonists, suggesting desensitization of the endogenous transmitter receptor. In conclusion, some identified Lymnaea neurons respond to glutamate via a receptor with novel pharmacological properties. Furthermore, a Lymnaea interneuron may employ glutamate as a transmitter at excitatory synapses.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources