Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov 1;6(11):1528-31.
doi: 10.1016/s0960-9822(96)00758-0.

Processing of O6-methylguanine by mismatch correction in human cell extracts

Affiliations
Free article

Processing of O6-methylguanine by mismatch correction in human cell extracts

S Ceccotti et al. Curr Biol. .
Free article

Abstract

Human cell extracts perform an aberrant form of DNA synthesis on methylated plasmids [1], which represents processing of O6-methylguanine (O6-meG). Here, we show that extracts of colorectal carcinoma cells with defects in the mismatch repair proteins that normally correct replication errors do not carry out this synthesis. hMSH2-defective LoVo cell extracts (hMSH for human MutS homologue) performed O6-meG-dependent DNA synthesis only after the addition of the purified hMutS alpha mismatch recognition complex. Processing of O6-meG by mismatch correction requires PCNA and therefore probably DNA polymerase delta and/or epsilon. Mismatch repair-defective cells withstand O6-meG in their DNA [2], making them tolerant to methylating agents. Methylation-tolerant HeLaMR clones, with a mutator phenotype and a defect in either mismatch recognition or correction in vitro, also performed little O6-meG-dependent DNA synthesis. Assays of pairwise combinations of tolerant and colorectal carcinoma cell extracts identified hMLH1 as the missing mismatch repair function in a group of tolerant clones. The absence of processing by extracts of methylation-tolerant cells provides the first biochemical evidence that lethality of DNA O6-meG derives from its interaction with mismatch repair.

PubMed Disclaimer

Publication types

LinkOut - more resources