Human RAD2 homolog 1 5'- to 3'-exo/endonuclease can efficiently excise a displaced DNA fragment containing a 5'-terminal abasic lesion by endonuclease activity
- PMID: 8939954
- DOI: 10.1074/jbc.271.47.30068
Human RAD2 homolog 1 5'- to 3'-exo/endonuclease can efficiently excise a displaced DNA fragment containing a 5'-terminal abasic lesion by endonuclease activity
Abstract
Repair of abasic lesions, one of the most common types of damage found in DNA, is crucial to an organism's well-being. Studies in vitro indicate that after apurinic-apyrimidinic endonuclease cleaves immediately upstream of a baseless site, removal of the 5'-terminal sugar-phosphate residue is achieved by deoxyribophosphodiesterase activity, an enzyme-mediated beta-elimination reaction, or by endonucleolytic cleavage downstream of the baseless sugar. Synthesis and ligation complete repair. Eukaryotic RAD2 homolog 1 (RTH1) nuclease, by genetic and biochemical evidence, is involved in repair of modified DNA. Efficient endonucleolytic cleavage by RTH1 nuclease has been demonstrated for annealed primers that have unannealed 5'-tails. In vivo, such substrate structures could result from repair-related strand displacement synthesis. Using 5'-tailed substrates, we examined the ability of human RTH1 nuclease to efficiently remove 5'-terminal abasic residues. A series of upstream primers were used to increasingly displace an otherwise annealed downstream primer containing a 5'-terminal deoxyribose-5-phosphate. Until displacement of the first annealed nucleotide, substrates resisted cleavage. With further displacement, efficient cleavage occurred at the 3'-end of the tail. Therefore, in combination with strand displacement activity, RTH1 nucleases may serve as an important alternative to other pathways in repair of abasic sites in DNA.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous